
2025/12/14 18:16 1/5 LU01e - Display

BZZ - Modulwiki - https://wiki.bzz.ch/

LU01e - Display

Die CSS-Anweisung „display“ bestimmt, wie ein HTML-Element auf der Webseite dargestellt wird. Sie
kontrolliert das Layout und das Verhalten des Elements im Browserfenster.

Die verschiedene Display-Werte

Die Auswahl des richtigen „display“-Werts hängt von den Anforderungen des Layouts und dem
gewünschten Verhalten der Elemente ab. Durch die geschickte Verwendung von „display“ können
Entwickler das Erscheinungsbild und die Funktionalität von Webseiten effektiv steuern. Hier ist eine
Übersicht über die wichtigsten Werte, die für „display“ verwendet werden können:

Wert Beschreibung

block (Block-Element)
Block-Elemente nehmen die gesamte verfügbare Breite ihres
übergeordneten Elements ein und beginnen auf einer neuen Zeile.
Beispiele für Block-Elemente sind `<div>`, `<p>`, `<h1>`-`<h6>`,
`<header>`, `<footer>`.

inline (Inline-Element)
Inline-Elemente nehmen nur so viel Breite wie nötig ein und bleiben im
selben Absatz oder auf derselben Zeile wie benachbarte Inline-Elemente.
Beispiele für Inline-Elemente sind ``, `<a>`, ``.

inline-block (Inline-Block-
Element)

Kombiniert Eigenschaften von Block- und Inline-Elementen. Es nimmt nur
so viel Breite wie nötig ein und kann dennoch mit anderen Inline- oder
Block-Elementen in derselben Zeile stehen. Häufig verwendet für
Elemente, die als Block formatiert werden müssen, aber in einer Zeile
bleiben sollen, z. B. `<button>`.

none (Ausgeblendetes
Element)

Das Element wird nicht gerendert und nimmt keinen Platz in der Layout-
Struktur ein. Es ist praktisch, um Elemente auszublenden oder dynamisch
zu verbergen. Verwendet für Elemente, die vorübergehend nicht
angezeigt werden sollen, z. B. auf verschiedenen Browsergrössen.

flex (Flexbox-Element)

Aktiviert das Flexbox-Layoutmodell für das Element, mit dem Sie flexible
Layouts erstellen können, indem Sie den Inhalt auf verschiedene Weise
anordnen und ausrichten. Flexbox ist besonders nützlich, um komplexere
Layouts zu erstellen und das Responsiveness von Websites zu
verbessern.

grid (Grid-Element)

Aktiviert das Grid-Layoutmodell für das Element, mit dem Sie Inhalte in
einer zweidimensionalen Rasteranordnung organisieren können. Grid ist
leistungsstark für die Erstellung von Layouts mit mehreren Spalten und
Zeilen und bietet präzise Kontrolle über die Positionierung von
Elementen.

Eine komplette Liste aller verfügbaren Werte finden Sie hier.

CSS Flexbox

CSS Flexbox ist ein leistungsstarkes Layoutmodell in CSS, das entwickelt wurde, um das Design von
Webseiten und Webanwendungen zu vereinfachen und flexible, dynamische Layouts zu ermöglichen.
Es bietet eine effiziente Möglichkeit, Elemente innerhalb eines Container-Elements zu organisieren,

https://www.w3schools.com/cssref/pr_class_display.php

Last update:
2025/08/20 19:47 de:modul:ffit:2-jahr:css:learningunits:lu01:display https://wiki.bzz.ch/de/modul/ffit/2-jahr/css/learningunits/lu01/display

https://wiki.bzz.ch/ Printed on 2025/12/14 18:16

auszurichten und zu verteilen, unabhängig von ihrer Grösse oder Reihenfolge.

Grundkonzept

Die Grundkonzepte von Flexbox umfassen das Container-Element und die darin enthaltenen Items.
Der Flex-Container fungiert als Rahmen für das Flexbox-Layout und organisiert die Flex-Items
innerhalb. Diese Items können horizontal oder vertikal angeordnet werden, je nach Ausrichtung der
Hauptachse. Die Hauptachse definiert die Richtung, in der die Flex-Items im Container angeordnet
sind, während die Querachse senkrecht dazu steht und die Ausrichtung der Items in Bezug auf die
Hauptachse beeinflusst. Das Verständnis dieser Grundkonzepte ist entscheidend für die effektive
Nutzung von Flexbox zur Erstellung dynamischer und flexibler Layouts in CSS.

Eigenschaften des Containers

Eigenschaft Beschreibung

flex-direction Bestimmt die Richtung der Hauptachse. Mögliche Werte sind: row, row-reverse,
column, column-reverse.

flex-wrap Kontrolliert, ob die Items in einer einzigen Zeile bleiben oder bei Bedarf in mehrere
Zeilen umgebrochen werden. Mögliche Werte sind: nowrap, wrap, wrap-reverse.

justify-content Definiert die Ausrichtung der Items entlang der Hauptachse. Dies beeinflusst, wie
überschüssiger Platz auf der Hauptachse verteilt wird.

align-items Bestimmt die Ausrichtung der Items entlang der Querachse, wenn sie auf der
Hauptachse nicht den gesamten verfügbaren Platz einnehmen.

align-content Steuert die Ausrichtung und Verteilung mehrerer Zeilen von Items entlang der
Querachse.

Eigenschaften des Items

Eigenschaft Beschreibung

order Ändert die Reihenfolge der Items innerhalb des Flex-Containers. Items mit einer
niedrigeren Reihenfolge werden zuerst angezeigt.

flex-grow Legt fest, wie viel zusätzlichen Platz ein Flex-Item entlang der Hauptachse einnehmen
kann, im Verhältnis zu anderen Flex-Items.

flex-shrink Definiert, wie stark ein Flex-Item kleiner werden kann, um sich an den verfügbaren
Platz anzupassen, im Verhältnis zu anderen Flex-Items.

flex-basis Legt die bevorzugte Anfangsgrösse eines Flex-Items entlang der Hauptachse fest,
bevor zusätzlicher Platz verteilt wird.

flex Eine verkürzte Schreibweise für flex-grow, flex-shrink und flex-basis in einem Wert.

https://wiki.bzz.ch/_detail/modul/ffit/css/learningunits/lu01/flexbox.png?id=de%3Amodul%3Affit%3A2-jahr%3Acss%3Alearningunits%3Alu01%3Adisplay

2025/12/14 18:16 3/5 LU01e - Display

BZZ - Modulwiki - https://wiki.bzz.ch/

Eigenschaft Beschreibung
 align-self Überschreibt die Ausrichtungsvorgaben des Flex-Containers für ein einzelnes Flex-Item.

CSS Grid

CSS Grid ist ein leistungsstarkes Layoutmodell in CSS, das entwickelt wurde, um das Design von
Webseiten und Webanwendungen zu verbessern, indem es eine präzise und flexible Möglichkeit
bietet, Elemente in einem zweidimensionalen Raster anzuordnen.

Ein HTML-Element wird durch die CSS-Eigenschaft `display: grid;` zu einem Grid-Container, der das
Raster für das CSS Grid-Layout bildet. Die direkten Kind-Elemente dieses Containers werden als Grid-
Items bezeichnet und innerhalb des Rasters positioniert. Der Raster bildet sich aus horizontalen und
vertikalen Linien. Die Nummern der einzelnen Linien legen fest, wo ein Bereich anfängt und wo es
endet.

Zeilen und Spalten

Mit grid-template-columns bzw. grid-template-rows legen wir die Höhe und Breite der Zeilen fest. Der
Wert „fr“ (fraction, Anteil) definiert einen Bereich im Grid. Dieser kann auch durch fixe Werte wie
`100px` ersetzt werden. Der Vorteil von „fr“ liegt in der responsivness. Die Breite des Anteils passt
sich jeweils an die Gesamtbreite an.

Ein Beispiel mit zwei Zeilen und drei Spalten:

.grid-container {
 display: grid;
 grid-template-
columns: 1fr 1fr 1fr;
 grid-template-
rows: 1fr 1fr;
 width: 600px;
 height: 400px;
}

1 2 3 4
1

2

3

Platzieren von Elementen im Grid

Nun können wir ein Element in diesem Raster platzieren, so wie wir es möchten. Dafür können wir mit
`grid-column-start`, `grid-column-end`, `grid-row-start` und `grid-row-end` jeweils den Start und das
Ende unseres Elements im Grid angeben. Wie im vorherigen Teil erwähnt, wird das Grid in Zahlen
aufgeteilt. So kann man zum Beispiel in Element mittig von unserem Grid-Raster platzieren:

https://wiki.bzz.ch/_detail/modul/ffit/css/learningunits/lu01/grid-1.svg?id=de%3Amodul%3Affit%3A2-jahr%3Acss%3Alearningunits%3Alu01%3Adisplay

Last update:
2025/08/20 19:47 de:modul:ffit:2-jahr:css:learningunits:lu01:display https://wiki.bzz.ch/de/modul/ffit/2-jahr/css/learningunits/lu01/display

https://wiki.bzz.ch/ Printed on 2025/12/14 18:16

.grid-item {
 grid-column-
start: 2;
 grid-column-end:
3;
 grid-row-start:
2;
 grid-row-end: 3;
 background-
color: blue;
}

1

2

3

4

1 2 3 4

Es gibt auch eine Kurzform von der Schreibweise für die Reihen und Spalten. Mit den Anweisungen
`grid-column` und `grid-row` können Sie jeweils getrennt mit einem `/` den Start und das Ende eines
Elements im Raster angeben.

.grid-item {
 grid-column:
2/3;
 grid-row: 1/4;
}

1

2

3

4

1 2 3 4

Grid Areas

Mit `grid-template-areas` haben wir die Möglichkeit, verschiedene Bereiche in unserem Grid zu
definieren. Mit `grid-area` können wir dann unsere Elemente innerhalb der vorgegebenen
Bereichenen platzerein.

.grid-container {
 grid-column-template: "1fr 1fr 1fr";
 grid-template-areas: "header header header"
 "thumbnail text links "

https://wiki.bzz.ch/_detail/modul/ffit/css/learningunits/lu01/grid-2.svg?id=de%3Amodul%3Affit%3A2-jahr%3Acss%3Alearningunits%3Alu01%3Adisplay
https://wiki.bzz.ch/_detail/modul/ffit/css/learningunits/lu01/grid-3.svg?id=de%3Amodul%3Affit%3A2-jahr%3Acss%3Alearningunits%3Alu01%3Adisplay

2025/12/14 18:16 5/5 LU01e - Display

BZZ - Modulwiki - https://wiki.bzz.ch/

 ". text . ";
}

.article-title {
 grid-area: header;
}

.article-img {
 grid-area: thumbnail;
}

Ressourcen

CSS-Tricks: A Complete Guide to Flexbox
W3S: CSS Flexbox

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/2-jahr/css/learningunits/lu01/display

Last update: 2025/08/20 19:47

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://www.w3schools.com/css/css3_flexbox.asp
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/2-jahr/css/learningunits/lu01/display

	LU01e - Display
	Die verschiedene Display-Werte
	CSS Flexbox
	Grundkonzept
	Eigenschaften des Containers
	Eigenschaften des Items

	CSS Grid
	Zeilen und Spalten
	Platzieren von Elementen im Grid
	Grid Areas

	Ressourcen

