
2026/02/12 14:38 1/2 Tailwind

BZZ - Modulwiki - https://wiki.bzz.ch/

LU01a - Grundlagen

Tailwind CSS ist ein modernes und hochflexibles CSS-Framework, das es Entwicklern ermöglicht,
schnell und effizient ansprechende Benutzeroberflächen zu gestalten. Im Gegensatz zu traditionellen
Frameworks wie Bootstrap, die vorgefertigte Komponenten und Designs bereitstellen, ist Tailwind ein
Utility-First Framework. Das bedeutet, dass es sich auf kleine, atomare Klassen konzentriert, mit
denen spezifische Styling-Aufgaben direkt im HTML gelöst werden können. Diese Klassen können
beliebig kombiniert werden, um vollständig individualisierte Designs zu erstellen.

Was macht Tailwind besonders?

Utility-First-Ansatz

Im Mittelpunkt von Tailwind steht der Utility-First-Ansatz. Statt wie in traditionellen CSS-Stilen Klassen
für spezifische Komponenten zu erstellen (z.B. .button oder .card), bietet Tailwind eine Vielzahl von
vordefinierten Klassen, die direkt auf einzelne Eigenschaften wie Farbe, Grösse, Abstand oder
Positionierung abzielen. Dadurch wird der Entwicklungsprozess beschleunigt, da sich Entwickler auf
das Erstellen der Benutzeroberfläche konzentrieren können, ohne ständig in CSS-Dateien wechseln zu
müssen.

Ein Beispiel könnte so aussehen:

<button class="bg-blue-500 text-white py-2 px-4 rounded hover:bg-blue-700">
 Klick mich!
</button>

In diesem Beispiel definiert jede Klasse eine bestimmte Eigenschaft:

bg-blue-500 legt den Hintergrund auf eine blaue Farbe fest.
text-white sorgt dafür, dass der Text weiss ist.
py-2 und px-4 setzen vertikale und horizontale Innenabstände.
rounded fügt abgerundete Ecken hinzu.
hover:bg-blue-700 ändert die Hintergrundfarbe, wenn der Button mit der Maus überfahren wird.

Keine vordefinierten Komponenten

Tailwind liefert keine fertigen Design-Komponenten wie Buttons oder Karten. Stattdessen erlaubt es
Entwicklern, alle Designentscheidungen selbst zu treffen. Dies bedeutet maximale Flexibilität und
völlige Freiheit beim Styling.

Konsistenz und Wiederverwendbarkeit

Durch die Nutzung von Utility-Klassen wird eine konsistente Designsprache über das gesamte Projekt
hinweg sichergestellt. Alle Entwickler im Team verwenden dieselben Klassen, was die Lesbarkeit und

http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html

Last update: 2025/11/05 08:07 de:modul:ffit:2-jahr:tailwind:start https://wiki.bzz.ch/de/modul/ffit/2-jahr/tailwind/start?rev=1762326475

https://wiki.bzz.ch/ Printed on 2026/02/12 14:38

Wartbarkeit des Codes verbessert.

Nachteil gegenüber komponentbasierte Frameworks wie
Bootstrap

Tailwind ist ein super Werkzeug, es gibt jedoch auch Nachteile, die wir beachten müssen. Da wir mit
Tailwind grundsätzlich „CSS in HTML schreiben“, werden unsere HTML-Dokumente sehr
unübersichtlich. So kann eine einfache Landing-Page wie folgt aussehen:

<div class="bg-gray-100 min-h-screen flex items-center justify-center">
 <div class="bg-white p-8 rounded-lg shadow-lg max-w-md w-full">
 <h1 class="text-2xl font-bold mb-4 text-center">Willkommen!</h1>
 <p class="text-gray-600 mb-6 text-center">
 Dies ist ein Beispiel für eine einfache Landingpage mit Tailwind CSS.
 </p>
 <button class="w-full bg-blue-500 text-white py-2 px-4 rounded hover:bg-
blue-600">
 Mehr erfahren
 </button>
 </div>
</div>

Dieses Problem wird jedoch entschärft, sobald man Komponentbasiert mit z.B. React arbeitet.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/2-jahr/tailwind/start?rev=1762326475

Last update: 2025/11/05 08:07

http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/2-jahr/tailwind/start?rev=1762326475

	LU01a - Grundlagen
	Was macht Tailwind besonders?
	Utility-First-Ansatz
	Keine vordefinierten Komponenten
	Konsistenz und Wiederverwendbarkeit

	Nachteil gegenüber komponentbasierte Frameworks wie Bootstrap

