
2026/02/03 12:14 1/2 LU01b - Linting & Formatting

BZZ - Modulwiki - https://wiki.bzz.ch/

LU01b - Linting & Formatting

Formatting

Formatter sorgen dafür, dass der gemeinsame Code einheitlich formatiert wird. Oftmals besitzen IDE
bereits eine Standard-Formattierung oder die Möglichkeit, Formatierungsregeln mit Entwicklern mit
denselber IDE auszutauschen.

Beispiele von IDE-spezifischen Formatierungen:

IntelliJ: Code Style XML unter .idea/codeStyles/…
Visual Studio Code: Settings unter .vscode/settings.json
Eclipse: Code Style Formatter: Eclipse Code Formatter XML
Diverse IDE: .editorconfig (aber nicht alle Regeln funktionieren aber bei allen IDE's)

IntelliJ Project.xml VS Code settings.json Eclipse java-formatter.xml .editorconfig
...
</JavaCodeStyleSettings>
 <codeStyleSettings
language="JAVA">
 <!-- Tab size -->
 <indentOptions>
 <option
name="INDENT_SIZE"
value="4"/>
 <option
name="TAB_SIZE" value="4"/>
 <option
name="USE_TAB_CHARACTER"
value="false"/>
 </indentOptions>

 <!-- New line at end
of file -->
 <option
name="INSERT_FINAL_NEWLINE"
value="true"/>
 </codeStyleSettings>
...

{
 // Tab size
 "editor.tabSize": 4,
 "editor.insertSpaces":
true,

 // New line at end of
file
"files.insertFinalNewline":
true,

 // Java-specific
 "editor.formatOnSave":
true,

 // Remove unused imports
"editor.codeActionsOnSave":
{
"source.organizeImports":
true
 },
}

...
 <profile kind="CodeFormatterProfile" name="Project Formatter"
version="12">

 <!-- Tab size -->
 <setting id="org.eclipse.jdt.core.formatter.tabulation.size" value="4"/>
 <setting id="org.eclipse.jdt.core.formatter.indentation.size" value="4"/>
 <setting id="org.eclipse.jdt.core.formatter.tabulation.char"
value="space"/>

 <!-- New line at end of file -->
 <setting
id="org.eclipse.jdt.core.formatter.insert_new_line_at_end_of_file_if_missing"
value="true"/>

 </profile>
...

...
[*]
indent_style = space
indent_size = 4
tab_width = 4

end_of_line = lf
insert_final_newline =
true
trim_trailing_whitespace
= true
...

Das Problem von solchen Konfigurationen ist ihre Abhängigkeit zu der IDE. Sobald ein Teammitglied
eine andere IDE nutzt, kommt es früher oder später zu Formatierungsunterschieden, da viele
(besonders komplexere) Regeln nicht für alle IDE's verfügbar ist. Ein weiteres Nachteil ist, dass solche
Formatierungen in der Regel nicht in die Build-Pipeline eingebaut werden können.

Daher würde ich IDE-unabhängige Formatter bei komplexeren Formatierungsregeln bevorzugen.
Einfache Regeln (Einrückungen, Trailing New Line etc.) sind oft in den gängigsten IDE's vorhanden.

Beispiele von IDE-unabhängigen Formatter-Bibliotheken:

Javascript, Typescript, HTML, CSS, JSON → Prettier
Python → black, pep8, …
Java → Google Java Format

Linting

Linting (dt. „fusseln“) bezeichnet das automatische finden und teilweise sogar korrigieren von
möglichen Fehlern o.Ä. anhand von einem definierten Regelset. Entsprechende Bibliotheken sind für
diverse Sprachen erhältlich.

Gängige Linter-Bibliotheken

Last update: 2026/01/20 15:28 de:modul:ffit:3-jahr:cicd:learningunits:lu01:b https://wiki.bzz.ch/de/modul/ffit/3-jahr/cicd/learningunits/lu01/b

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

Javascript, Typescript → ESLint(https://eslint.org/) ,
TSLint wurde eingestellt und ist daher nicht mehr empfohlen
Python → Pylint (https://www.pylint.org/)
Java → PMD (https://pmd.github.io/)
Diverse Sprachen → SonarQube for IDE (SonarLint)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/cicd/learningunits/lu01/b

Last update: 2026/01/20 15:28

https://eslint.org/
https://www.pylint.org/
https://pmd.github.io/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/cicd/learningunits/lu01/b

	LU01b - Linting & Formatting
	Formatting
	Linting

