2026/02/03 12:14 1/2 LUO1b - Linting & Formatting

LUOL1b - Linting & Formatting

Formatting

Formatter sorgen daflr, dass der gemeinsame Code einheitlich formatiert wird. Oftmals besitzen IDE
bereits eine Standard-Formattierung oder die Mdglichkeit, Formatierungsregeln mit Entwicklern mit
denselber IDE auszutauschen.

Beispiele von IDE-spezifischen Formatierungen:

e Intelli): Code Style XML unter .idea/codeStyles/..

¢ Visual Studio Code: Settings unter .vscode/settings.json

e Eclipse: Code Style Formatter: Eclipse Code Formatter XML

» Diverse IDE: .editorconfig (aber nicht alle Regeln funktionieren aber bei allen IDE's)

Intelli) Project.xml VS Code settings.json Eclipse java-formatter.xml .editorconfig

</JavaCodeStyleSettings>
<codeStyleSettings
language="JAVA">
<!-- Tab size -->
<indentOptions>
<option
name="INDENT_ SIZE"

{
// Tab size
"editor.tabSize": 4,
"editor.insertSpaces":

true <profile kind="CodeFormatterProfile" name="Project Formatter"

version="12">
// New line at end of <1-- Tab size --> [*]

value="4"/> fl?e 5 . P— <setting id="org.eclipse.jdt.core.formatter.tabulation.size" value="4"/> }ndent;@yle_: Space
v files.insertFinalNewline": : = T 3 : . — wans_|indent size = 4
<option e <setting id="org.eclipse.jdt.core.formatter.indentation.size" value="4"/> tab width = 4
name="TAB_SIZE" value="4"/> ’ <setting id="org.eclipse.jdt.core.formatter.tabulation.char" - B
name="uszo%txémc]HARACTER" // Java-specific paa— end_of line = 1f
value="false"/> editor. formatOnSave": <!l-- New line at end of file --> Hnererit Gl iEling =
< v true, - true
</indentOptions> <setting trim trailing whitespace
= id="org.eclipse.jdt.core.formatter.insert_new_line at_end of file if missing"|_ [— 9. p
// Remove unused imports = true

<!-- New line at end value="true"/>
of file -->
<option
name="INSERT FINAL_NEWLINE"
value="true"/>
</codeStyleSettings> }

"editor.codeActionsOnSave":
"source.organizeImports": S/reiile
true s

+

Das Problem von solchen Konfigurationen ist ihre Abhangigkeit zu der IDE. Sobald ein Teammitglied
eine andere IDE nutzt, kommt es friher oder spater zu Formatierungsunterschieden, da viele
(besonders komplexere) Regeln nicht fur alle IDE's verfugbar ist. Ein weiteres Nachteil ist, dass solche
Formatierungen in der Regel nicht in die Build-Pipeline eingebaut werden kdnnen.

Daher wurde ich IDE-unabhangige Formatter bei komplexeren Formatierungsregeln bevorzugen.
Einfache Regeln (Einrlickungen, Trailing New Line etc.) sind oft in den gangigsten IDE's vorhanden.

Beispiele von IDE-unabhangigen Formatter-Bibliotheken:
e Javascript, Typescript, HTML, CSS, JSON - Prettier

* Python - black, pep§, ...
* Java - Google Java Format

Linting

Linting (dt. ,fusseln®) bezeichnet das automatische finden und teilweise sogar korrigieren von
moglichen Fehlern 0.A. anhand von einem definierten Regelset. Entsprechende Bibliotheken sind flr
diverse Sprachen erhaltlich.

Gangige Linter-Bibliotheken

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2026/01/20 15:28 de:modul:ffit:3-jahr:cicd:learningunits:lu01:b https://wiki.bzz.ch/de/modul/ffit/3-jahr/cicd/learningunits/lu01/b

e Javascript, Typescript = ESLint(https://eslint.org/) ,
TSLint wurde eingestellt und ist daher nicht mehr empfohlen
e Python - Pylint (https://www.pylint.org/)
e Java » PMD (https://pmd.github.io/)
e Diverse Sprachen = SonarQube for IDE (SonarLint)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/cicd/learningunits/lu01/b

Last update: 2026/01/20 15:28

https://wiki.bzz.ch/

Printed on 2026/02/03 12:14

https://eslint.org/
https://www.pylint.org/
https://pmd.github.io/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/cicd/learningunits/lu01/b

	LU01b - Linting & Formatting
	Formatting
	Linting

