2026/01/12 02:46 1/2 LUO2c - Dateien einlesen

LUO2c - Funktionale Implementationen 3

Konfigurationsvariabeln
URLs, Benutzernamen und Passworter sollten nicht hartcodiert werden, da sonst jeder mit Read-
Rechten die Zugangsdaten lesen und somit auf die Datenbank zugreifen kann.

Es gibt verschiedene Arten, um solche Variabeln einzulesen, wie zum Beispiel: Command-line
Argumente, System Properties, eine . env-Datei, usw.

FUr native Java eignet sich java.util.Properties

e https://www.baeldung.com/java-properties

1. Erstellen Sie die Datei config.properties anhand von config.properties.template.
2. Initialisieren Sie ein Properties-Objekt:

Properties
3. Laden Sie die Datei aus dem Root-Verzeichnis:
FileInputStream("config.properties"

4. Holen Sie die Werte der Konfigurationen von DB_URL, DB_USER und DB_ PASSWORD aus den
Properties.

config.properties selbst wird nicht im Git-Repository eingecheckt, sondern existiert nur lokal. So
ist sichergestellt, dass sensible Angaben nicht , geleakt” werden.

FUhren Sie die Tests erneut aus und korrigieren Sie ihre Implementation falls n6tig.

FUr die Pipeline wird eine separate Testdatenbank benétigt. Studieren Sie die Erganzungen der
Pipeline und die beiden SQL-Dateien, um den Einsatz der Postgres-Service zu verstehen.

1/0

Stellen Sie sich vor, dass die Betreiber einer Bibliothek bisher eine Excel-Datei fur die Verwaltung der
Blcher genutzt haben [J.

Anstatt alle darin enthaltenen Bucher abzutippen und manuell in die Datenbank einzutragen, moéchten
sie eine Import-Funktionalitat. Da die Buchtitel teilweise Kommas und Semikolons enthalten,
verwenden wir \ 't als Trennzeichen fur den Export. Dieser ist zudem in UTF-8, was auch die
Standardcodierung in Git ist.

Anforderung 3: Mit dem Befehl importBooks <FILE PATH> soll die angegebene TSV-Datei
eingelesen werden und in die Datenbank gespeichert werden. <FILE PATH> steht dabei naturlich fur
einen Pfad und Dateinamen.

1. Erweitern Sie die Befehlslogik, so dass der Befehl importBooks mit dem Pfad als Argument
erkannt wird.

BZZ - Modulwiki - https://wiki.bzz.ch/


https://www.baeldung.com/java-properties
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+properties
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+fileinputstream

Last update:
2025/08/29 de:modul:ffit:3-jahr:java:learningunits:lu02:c https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/c?rev=1756462889
12:21

2. Schreiben Sie die Logik, um die Datei ohne zusatzliche Dependencies einzulesen und eine
List<Book> daraus zu erstellen. Beispielcode fur einen solchen Reader finden Sie u.a. auf
https://www.baeldung.com/java-csv-file-array

3. Speichern Sie die resultierende Liste in die Datenbank. Eintrage mit derselben id sollen
Uberschrieben werden, damit man auch Korrekturen mit dieser Funktion einlesen kann.
https://www.baeldung.com/java-jdbc

4, Importieren Sie die Datei books.tsv im Ordner data

importBooks data/books.tsv

5. Uberpriifen Sie die Anforderung mit den Tests im Commit 670f42e. Aufgrund eines Fehlers in
der Testdatei bendtigen Sie zudem den Commit a3f9cea.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: r
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/c?rev=1756462889 A

Last update: 2025/08/29 12:21

https://wiki.bzz.ch/ Printed on 2026/01/12 02:46


https://www.baeldung.com/java-csv-file-array
https://www.baeldung.com/java-jdbc
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/c?rev=1756462889

	LU02c - Funktionale Implementationen 3
	Konfigurationsvariabeln
	I/O


