
2026/01/12 11:34 1/4 LU02a - Konsoleneingabe

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02a - Funktionale Implementationen 1

Main-Methode

Die Main-Methode ist der Ausgangspunkt einer Java-Applikation.

 public static void main(String[] args) {
 ...
 }

Das String-Array args, welches der Methode übergeben wird, entsprechen den Argumenten, wenn
das kompilierte Programm aufgerufen wird.

Erstellen Sie ein Fork-Repository mit allen Branches von
https://github.com/bzz-templates-java/ffit-lu02-library-app Klonen Sie anschliessend ihr eigenes
Repository, um die Basisstruktur für die LibraryApp zu erhalten, welche Sie in den kommenden
Kapiteln implementieren werden.

Scanner

Bei vielen Backend-Applikationen erfolgt die Benutzerinteraktionen via API-Aufrufen oder anderen
Schnittstellen. Für den Anfang können wir die Klasse Scanner nutzen. Diese erlaubt es,
Benutzereingaben in der Konsole zu lesen.

Nutzen Sie die Klasse Scanner, um einen String einzulesen.

https://www.w3schools.com/java/java_user_input.asp

Diesen String verwenden wir als Befehl, um verschiedene Implementierte Funktionen auszuführen.

Anforderung 1: Die Eingabe quit soll das Programm beenden, die Eingabe help soll die Liste aller
implementierten Befehle auflisten und bei einer anderen Eingabe soll eine Nachricht ausgegeben
werden, dass die Eingabe nicht als Befehl erkannt wurde. Nach dem Ausführen eines Befehls (ausser
quit) soll der nächste eingegeben werden können usw.

Überlegen Sie sich vor der Implementation, wie der Code so gestaltet werden kann, dass zukünftige
Befehle einfach hinzugefügt werden können. Vielleicht haben Sie bereits eine Idee, wie man die
Befehle erfassen könnte, so dass die Liste der Befehle (help) nicht separat erweitern muss. Sie
können aber solche Verbesserungen auch später noch erledigen.

Machen Sie einen Cherry-Pick des Commits d5cca5d, um die Tests für diesen Implementationsschritt
zu erhalten. Führen Sie die Tests aus und korrigieren Sie ihre Implementation falls nötig.

Objekte

Anforderung 2: Eine Bibliotheksapplikation soll die vorhanden Bücher mit dem Befehl listBooks
auflisten können.

https://github.com/bzz-templates-java/ffit-lu02-library-app
https://www.w3schools.com/java/java_user_input.asp

Last
update:
2025/08/26
01:28

de:modul:ffit:3-jahr:java:learningunits:lu02:main https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756164480

https://wiki.bzz.ch/ Printed on 2026/01/12 11:34

Dazu braucht es erstmal eine Klasse Book. Erstellen Sie die Klasse und die folgenden beiden Objekte
als Konstanten. Beim Befehl listBooks sollen diese beiden Bücher je ein Buch(mindestens der Titel)
pro Zeile ausgegeben werden.

id isbn title author year
1 978-3-8362-9544-4 Java ist auch eine Insel Christian Ullenboom 2023
2 978-3-658-43573-8 Grundkurs Java Dietmar Abts 2024

Machen Sie einen Cherry-Pick des Commits 1766cfc, um die Tests für diesen Implementationsschritt
zu erhalten. Führen Sie die Tests aus und korrigieren Sie ihre Implementation falls nötig.

Persistierung

Anstatt die Bücher nur hardcodiert in der Applikation zu haben, soll die PostgreSQL-Datenbank
verwendet werden.

Loggen Sie sich mit folgendem Befehl bei der Datenbank an und setzen Sie nachfolgende SQL-
Statements ab, um einige Beispieleinträge zu erfassen.

psql -U localuser -d localdb

CREATE TABLE books (
 id SERIAL PRIMARY KEY,
 isbn VARCHAR(20) NOT NULL,
 title VARCHAR(255) NOT NULL,
 author VARCHAR(255) NOT NULL,
 publication_year INT
);

INSERT INTO books (isbn, title, author, publication_year)
VALUES
 ('978-0134685991', 'Effective Java', 'Joshua Bloch', 2018),
 ('978-0596009205', 'Head First Java', 'Kathy Sierra, Bert Bates', 2005);

Mit \quit können Sie sich übrigens wieder von PostgreSQL abmelden.

\quit

Für den Zugang zu einer Datenbank verwenden wir JDBC (Java Data-Base Connectivity).

https://www.baeldung.com/java-jdbc

Anstatt der Maven-Dependency muss die Dependency in build.gradle eingetragen werden. Sie
erhalten automatisch die nachfolgende Liste, wenn Sie den Commits 23e74a3 cherry-picken.

dependencies {
 // dependencies for the application
 implementation 'org.postgresql:postgresql:42.7.3'

https://www.baeldung.com/java-jdbc

2026/01/12 11:34 3/4 LU02a - Konsoleneingabe

BZZ - Modulwiki - https://wiki.bzz.ch/

 // dependencies for testing
 testImplementation 'org.junit.jupiter:junit-jupiter:5.10.2'
}

Implementieren Sie eine Methode, die eine Datenbankverbindung aufbaut, folgende Abfrage macht
und für jeden zurückgelieferten Eintrag ein Book-Objekt erstellt. Die Methode soll dann eine Liste
(java.util.List) der Buch-Objekte zurückgeben.

SELECT id, isbn, title, author, publication_year FROM books

Führen Sie die Tests aus und korrigieren Sie ihre Implementation falls nötig.

Konfigurationsvariabeln

URLs, Benutzernamen und Passwörter sollten nicht hartcodiert werden, da sonst jeder mit Read-
Rechten die Zugangsdaten lesen und somit auf die Datenbank zugreifen kann.

Es gibt verschiedene Arten, um solche Variabeln einzulesen, wie zum Beispiel: Command-line
Argumente, System Properties, eine .env-Datei, usw.

Für native Java eignet sich java.util.Properties

https://www.baeldung.com/java-properties

Erstellen Sie die Datei config.properties anhand von config.properties.template.1.
Initialisieren Sie ein Properties-Objekt:2.

new Properties()

Laden Sie die Datei aus dem Root-Verzeichnis:3.

new FileInputStream("config.properties")

Holen Sie die Werte der Konfigurationen von DB_URL, DB_USER und DB_PASSWORD aus den4.
Properties.

config.properties selbst wird nicht im Git-Repository eingecheckt, sondern existiert nur lokal. So
ist sichergestellt, dass sensible Angaben nicht „geleakt“ werden.

Führen Sie die Tests erneut aus und korrigieren Sie ihre Implementation falls nötig.

Für die Pipeline wird eine separate Testdatenbank benötigt. Studieren Sie die Ergänzungen der
Pipeline und die beiden SQL-Dateien, um den Einsatz der Postgres-Service zu verstehen.

I/O

Stellen Sie sich vor, dass die Betreiber einer Bibliothek bisher eine Excel-Datei für die Verwaltung der
Bücher genutzt haben �.

https://www.baeldung.com/java-properties
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+properties
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+fileinputstream

Last
update:
2025/08/26
01:28

de:modul:ffit:3-jahr:java:learningunits:lu02:main https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756164480

https://wiki.bzz.ch/ Printed on 2026/01/12 11:34

Anstatt alle darin enthaltenen Bücher abzutippen und manuell in die Datenbank einzutragen, möchten
sie eine Import-Funktionalität. Da die Buchtitel teilweise Kommas und Semikolons enthalten,
verwenden wir \t als Trennzeichen für den Export. Dieser ist zudem in UTF-8, was auch die
Standardcodierung in Git ist.

Anforderung 3: Mit dem Befehl importBooks <FILE_PATH> soll die angegebene TSV-Datei
eingelesen werden und in die Datenbank gespeichert werden. <FILE_PATH> steht dabei natürlich für
einen Pfad und Dateinamen.

Erweitern Sie die Befehlslogik, so dass der Befehl importBooks mit dem Pfad als Argument1.
erkannt wird.
Schreiben Sie die Logik, um die Datei ohne zusätzliche Dependencies einzulesen und eine2.
List<Book> daraus zu erstellen. Beispielcode für einen solchen Reader finden Sie u.a. auf
https://www.baeldung.com/java-csv-file-array
Speichern Sie die resultierende Liste in die Datenbank. Einträge mit derselben id sollen3.
überschrieben werden, damit man auch Korrekturen mit dieser Funktion einlesen kann.
https://www.baeldung.com/java-jdbc
Importieren Sie die Datei books.tsv im Ordner data4.

importBooks data/books.tsv

Überprüfen Sie die Anforderung mit den Tests im Commit 670f42e5.

Weitere Anpassungen (optional)

Change request 2.1: Damit listBooks nicht immer alle Bücher ausgibt, soll optional ein Limit
mitgegeben werden können. listBooks 10 soll also maximal die ersten 10 Bücher zurückliefern.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756164480

Last update: 2025/08/26 01:28

https://www.baeldung.com/java-csv-file-array
https://www.baeldung.com/java-jdbc
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756164480

	LU02a - Funktionale Implementationen 1
	Main-Methode
	Scanner
	Objekte
	Persistierung
	Konfigurationsvariabeln
	I/O
	Weitere Anpassungen (optional)

