2026/01/12 02:47 1/4 LUO2a - Konsoleneingabe

LUO2a - Funktionale Implementationen 1

Main-Methode

Die Main-Methode ist der Ausgangspunkt einer Java-Applikation.

public static void main(String|| args

Das String-Array args, welches der Methode Ubergeben wird, entsprechen den Argumenten, wenn
das kompilierte Programm aufgerufen wird.

Erstellen Sie ein Fork-Repository mit allen Branches von
https://github.com/bzz-templates-java/ffit-lu02-library-app Klonen Sie anschliessend ihr eigenes
Repository, um die Basisstruktur fur die LibraryApp zu erhalten, welche Sie in den kommenden
Kapiteln implementieren werden.

Scanner

Bei vielen Backend-Applikationen erfolgt die Benutzerinteraktionen via API-Aufrufen oder anderen
Schnittstellen. Fur den Anfang kénnen wir die Klasse Scanner nutzen. Diese erlaubt es,
Benutzereingaben in der Konsole zu lesen.

Nutzen Sie die Klasse Scanner, um einen String einzulesen.

e https://javabeginners.de/Ein-_und_Ausgabe/Scanner.php
e https://www.w3schools.com/java/java_user_input.asp

Diesen String verwenden wir als Befehl, um verschiedene Implementierte Funktionen auszufuhren.

Anforderung 1: Die Eingabe quit soll das Programm beenden, die Eingabe help soll die Liste aller
implementierten Befehle auflisten und bei einer anderen Eingabe soll eine Nachricht ausgegeben
werden, dass die Eingabe nicht als Befehl erkannt wurde. Nach dem Ausfihren eines Befehls (ausser
quit) soll der nachste eingegeben werden kdnnen usw.

Uberlegen Sie sich vor der Implementation, wie der Code so gestaltet werden kann, dass zukiinftige
Befehle einfach hinzugeflugt werden kdnnen. Vielleicht haben Sie bereits eine Idee, wie man die
Befehle erfassen konnte, so dass die Liste der Befehle (help) nicht separat erweitern muss. Sie
konnen aber solche Verbesserungen auch spater noch erledigen.

Machen Sie einen Cherry-Pick des Commits d5cca5d, um die Tests fur diesen Implementationsschritt
zu erhalten. Fuhren Sie die Tests aus und korrigieren Sie ihre Implementation falls notig.

Objekte

Anforderung 2: Eine Bibliotheksapplikation soll die vorhanden Bucher mit dem Befehl 1istBooks

BZZ - Modulwiki - https://wiki.bzz.ch/

https://github.com/bzz-templates-java/ffit-lu02-library-app
https://javabeginners.de/Ein-_und_Ausgabe/Scanner.php
https://www.w3schools.com/java/java_user_input.asp

Last
update:
2025/08/26
09:04

de:modul:ffit:3-jahr:java:learningunits:lu02:main https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756191886

auflisten kdnnen.

Dazu braucht es erstmal eine Klasse Book. Erstellen Sie die Klasse und die folgenden beiden Objekte
als Konstanten. Beim Befehl 1istBooks sollen diese beiden Blicher je ein Buch(mindestens der Titel)
pro Zeile ausgegeben werden.

idlisbn title author year
1 |978-3-8362-9544-4|Java ist auch eine Insel|Christian Ullenboom|2023
2 |978-3-658-43573-8|Grundkurs Java Dietmar Abts 2024

Machen Sie einen Cherry-Pick des Commits 1766cfc, um die Tests fur diesen Implementationsschritt
zu erhalten. FUhren Sie die Tests aus und korrigieren Sie ihre Implementation falls nétig.

Persistierung
Anstatt die Blcher nur hardcodiert in der Applikation zu haben, soll die PostgreSQL-Datenbank
verwendet werden.

Loggen Sie sich mit folgendem Befehl bei der Datenbank an und setzen Sie nachfolgende SQL-
Statements ab, um einige Beispieleintrage zu erfassen.

psgl -U localuser -d localdb

books
id SERIAL
isbn
title
author
publication year

books (isbn, title, author, publication year

'978-0134685991', 'Effective Java', 'Joshua Bloch'
'978-0596009205', 'Head First Java', 'Kathy Sierra, Bert Bates' g

Mit \quit konnen Sie sich ubrigens wieder von PostgreSQL abmelden.
\quit
FUr den Zugang zu einer Datenbank verwenden wir |DBC (Java Data-Base Connectivity).

e https://www.baeldung.com/java-jdbc

Anstatt der Maven-Dependency muss die Dependency in build.gradle eingetragen werden. Sie
erhalten automatisch die nachfolgende Liste, wenn Sie den Commits 23e74a3 cherry-picken.

dependencies {

https://wiki.bzz.ch/ Printed on 2026/01/12 02:47

https://www.baeldung.com/java-jdbc

2026/01/12 02:47 3/4 LUO2a - Konsoleneingabe

// dependencies for the application
implementation 'org.postgresql:postgresql:42.7.3"

// dependencies for testing
testImplementation 'org.junit.jupiter:junit-jupiter:5.10.2"

}

Implementieren Sie eine Methode, die eine Datenbankverbindung aufbaut, folgende Abfrage macht
und fur jeden zurlckgelieferten Eintrag ein Book-Objekt erstellt. Die Methode soll dann eine Liste
(java.util.List) der Buch-Objekte zurtickgeben.

id, isbn, title, author, publication year books

Flhren Sie die Tests aus und korrigieren Sie ihre Implementation falls nétig.

Konfigurationsvariabeln
URLs, Benutzernamen und Passworter sollten nicht hartcodiert werden, da sonst jeder mit Read-
Rechten die Zugangsdaten lesen und somit auf die Datenbank zugreifen kann.

Es gibt verschiedene Arten, um solche Variabeln einzulesen, wie zum Beispiel: Command-line
Argumente, System Properties, eine . env-Datei, usw.

Fur native Java eignet sich java.util.Properties

e https://www.baeldung.com/java-properties

1. Erstellen Sie die Datei config.properties anhand von config.properties.template.
2. Initialisieren Sie ein Properties-Objekt:

Properties
3. Laden Sie die Datei aus dem Root-Verzeichnis:
FileInputStream("config.properties"

4. Holen Sie die Werte der Konfigurationen von DB_URL, DB USER und DB _PASSWORD aus den
Properties.

config.properties selbst wird nicht im Git-Repository eingecheckt, sondern existiert nur lokal. So
ist sichergestellt, dass sensible Angaben nicht , geleakt” werden.

FUhren Sie die Tests erneut aus und korrigieren Sie ihre Implementation falls nétig.

Flr die Pipeline wird eine separate Testdatenbank bendétigt. Studieren Sie die Erganzungen der
Pipeline und die beiden SQL-Dateien, um den Einsatz der Postgres-Service zu verstehen.

1/0

Stellen Sie sich vor, dass die Betreiber einer Bibliothek bisher eine Excel-Datei fur die Verwaltung der

BZZ - Modulwiki - https://wiki.bzz.ch/

https://www.baeldung.com/java-properties
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+properties
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+fileinputstream

Last

gggg;gé/ze de:modul:ffit:3-jahr:java:learningunits:lu02:main https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756191886

09:04

Blcher genutzt haben [J.

Anstatt alle darin enthaltenen Bucher abzutippen und manuell in die Datenbank einzutragen, méchten
sie eine Import-Funktionalitat. Da die Buchtitel teilweise Kommas und Semikolons enthalten,
verwenden wir \'t als Trennzeichen flr den Export. Dieser ist zudem in UTF-8, was auch die
Standardcodierung in Git ist.

Anforderung 3: Mit dem Befehl importBooks <FILE PATH> soll die angegebene TSV-Datei
eingelesen werden und in die Datenbank gespeichert werden. <FILE PATH> steht dabei natarlich fur
einen Pfad und Dateinamen.

1. Erweitern Sie die Befehlslogik, so dass der Befehl importBooks mit dem Pfad als Argument
erkannt wird.

2. Schreiben Sie die Logik, um die Datei ohne zusatzliche Dependencies einzulesen und eine
List<Book> daraus zu erstellen. Beispielcode fur einen solchen Reader finden Sie u.a. auf
https://www.baeldung.com/java-csv-file-array

3. Speichern Sie die resultierende Liste in die Datenbank. Eintrage mit derselben id sollen
uberschrieben werden, damit man auch Korrekturen mit dieser Funktion einlesen kann.
https://www.baeldung.com/java-jdbc

4. Importieren Sie die Datei books.tsv im Ordner data

importBooks data/books.tsv

5. Uberpriifen Sie die Anforderung mit den Tests im Commit 670f42e
Weitere Anpassungen (optional)

Change request 2.1: Damit ListBooks nicht immer alle Blcher ausgibt, soll optional ein Limit
mitgegeben werden kénnen. L1istBooks 10 soll also maximal die ersten 10 Blicher zurtckliefern.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756191886 ra=

Last update: 2025/08/26 09:04

https://wiki.bzz.ch/ Printed on 2026/01/12 02:47

https://www.baeldung.com/java-csv-file-array
https://www.baeldung.com/java-jdbc
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu02/main?rev=1756191886

	LU02a - Funktionale Implementationen 1
	Main-Methode
	Scanner
	Objekte
	Persistierung
	Konfigurationsvariabeln
	I/O
	Weitere Anpassungen (optional)

