
2026/01/12 11:34 1/2 LU03b - Logging

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03b - Logging

Übersicht

Standardmässig wird bei Java System.out für Logeinträge und System.err für Fehlermeldungen
genutzt.

Dies ist natürlich störend, wenn die Applikation über die Konsole bedient wird.

Aber auch unabhängig davon, wird bei Applikation in der Regel ein Logging-Framework genutzt.
Meldungen in einer Log-Datei können auch nach dem Beenden der Applikation oder nach einem
Serverneustart gelesen werden.

Java Util Logging
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
Log4j https://logging.apache.org/log4j/2.x/index.html
SLF4J (Simple Logging Facade for Java) https://www.slf4j.org/

SLF4J + Logback

Um SLF4J nutzen zu können, muss erstmal die Abhängigkeit in build.gradle ergänzt werden.

Als nächstes kann unter src/main/resources/ die Logback-Konfigurationsdatei logback.xml
erstellt werden. In dieser wird unter anderem definiert, welcher Log-Level genutzt wird. Ebenfalls
kann dort ausgewählt werden, ob die Konsole (ch.qos.logback.core.ConsoleAppender) oder
ein Log-File (ch.qos.logback.core.rolling.RollingFileAppender) benutzt werden soll.

Die Änderungen sind im Commit 6df4111 enthalten.

LogLevel

Anschliessend können sämtliche Klassen, in denen Logging eingesetzt werden soll mit einer Logger-
Objekt ausgestattet werden. Heutzutage wird oft log als Name gewählt, obwohl dieser von der
Namenskonvention für Konstanten abweicht. Hauptsache die Benennung ist innerhalb des Projekts
einheitlich.

Vorher Nachher

 try {
 ...
 } catch
(Exception e) {
e.printStackTrace();
 }

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
...
 private static final Logger log =
LoggerFactory.getLogger(<CLASS_NAME>.class);
 ...
 try {
 ...
 } catch (Exception e) {
 log.error("Error during ...", e);
 }

https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://logging.apache.org/log4j/2.x/index.html
https://www.slf4j.org/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

Last update:
2025/09/01
16:09

de:modul:ffit:3-jahr:java:learningunits:lu03:b https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/b?rev=1756735755

https://wiki.bzz.ch/ Printed on 2026/01/12 11:34

Level Beschreibung Beispiel

DEBUG Für Entwickler interessant, nicht für den Betrieb
(interne Details, Diagnose, Ablaufverfolgung).

SQL-Statement, Aufruf-Parameter,
Zwischenergebnisse

INFO Normale, erwartete Ereignisse, die den
regulären Ablauf dokumentieren.

Anwendung gestartet, Benutzer hat sich
angemeldet, erfolgreicher DB-Aufruf

WARN
Unerwartete, aber tolerierbare Situation;
Anwendung läuft weiter, sollte jedoch geprüft
werden.

Ungültige Benutzereingabe, deprecated API
verwendet, langsame Antwortzeit

ERROR
Schwerwiegender Fehler, der Funktionalität
einschränkt oder nicht kompensiert werden
kann.

Datenbank nicht erreichbar, IOException
beim Schreiben einer Datei, Transaktion
fehlgeschlagen

Die Wahl des richtigen Loglevels ist essentiell, um bei grösseren Applikationen den Überblick zu
behalten.

Grundsätzlich gilt: Eine Exception ist mindestens Stufe WARN, denn Exceptions sollten im Normalfall
nicht auftauchen. Bei .error(…) und '.warn(…)' kann daher auch ein Stacktrace (Throwable)
mitgegeben werden. Wenn man eine Exception „wrapped“ und weiterwirft (z.B.
NumberFormatException in eine IllegalArgumentException), dann kann das Ereignis zwar
geloggt werden, aber der StackTrace sollte nur einmal (beim endgültigen Fangen) ausgegeben
werden.

Jedes catch-Statement sollte den Fehler loggen oder wrapped weiterwerfen. Überprüfen Sie all Ihre
catch-Statements und bauen Sie entsprechende Log-Aufrufe ein.

Robuste Applikationen

Applikationen sollten nicht aufgrund kleinen Fehler abstürzen. Machen Sie sich daher beim
Programmieren stets Gedanken über mögliche Fehler und das entsprechende Verhalten Ihrer
Applikation.

Change request 2.1: Damit listBooks nicht immer alle Bücher ausgibt, soll optional ein Limit
mitgegeben werden können. listBooks 10 soll also maximal die ersten 10 Bücher zurückliefern.
Wird bei dieser Änderung nicht eine Zahl, sondern ein anderer String eingegeben, soll der Vorfall
geloggt werden, aber die Applikation soll weiterlaufen.

Auch bei importBooks soll, sofern keine Importdatei gefunden werden kann, die Applikation
weiterlaufen und ein entsprechender Log-Eintrag gemacht werden.

Überprüfen Sie Ihre Änderungen mit dem Commit 31d6f95.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/b?rev=1756735755

Last update: 2025/09/01 16:09

https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/b?rev=1756735755

	LU03b - Logging
	Übersicht
	SLF4J + Logback
	LogLevel
	Robuste Applikationen

