2026/01/12 02:51 1/3 LUO3c - Klassen und Tabellen synchronisieren

LUO3c - Klassen und Tabellen
synchronisieren

Ausgangslage

In der vorhergehenden Lektion haben Sie die Klasse Book aufgrund von der Tabelle books
implementiert. Bei einer Anderung miissen Sie dadurch immer sowohl die Tabelle als auch die Klasse
anpassen, da diese immer aufeinanderpassen mussen.

SQL books Java Book
Book
-id: int
-title: String
-author: String
publication_year INT | | Sisbn: String

-publicationYear: int

+Book(id: int, isbn: String, title: String, author: String, publicationYear: int)
+getld(): int

+getTitle(): String

+setTitle(title: String): void

+getAuthor(): String

+setAuthor(author: String): void

+getlsbn(): String

+setlsbn(isbn: String): void
+getPublicationYear(): int
+setPublicationYear(publicationYear: int): void
+toString(): String

Um unndétige Arbeitsschritte zu vermeiden, kdnnen wir die eine Seite aus der anderen generieren:

e Java-first: Aus den Java-Klassen werden die entsprechenden SQL-Tabellen generiert.
e SQL-first: Aus den SQL-Tabellen werden die entsprechende Java-Klassen generiert.

JPA/Hibernate

Wir wahlen den Java-first-Ansatz mit JPA/Hibernate.

Die build.gradle wurde im Commit TODO bereits mit den passenden Abhangigkeiten erganzt. Die
zusatzlich Abhangigkeit zu Hikari dient ausserdem, um Datenbankverbindungen zu cachen.

Ebenfalls existiert eine Konfiguration persistance.xml. Gewisse Einstellungen wie
jakarta.persistence.jdbc.url, jakarta.persistence.jdbc.user oder
jakarta.persistence. jdbc.password werden nicht mit der Konfigurationsdatei commited,
sondern kdnnen wie bis anhin in config.properties geschrieben und ersetzen die bisherigen
Variabeln.

Vorher Nachher

DB _URL=jdbc:postgresql://localhost:5432/1ocaldb|jakarta.persistence.jdbc.url=jdbc:postgresql://localhost:5432/1ocaldb
DB USER=localuser jakarta.persistence.jdbc.user=1localuser

DB _PASSWORD=secret jakarta.persistence.jdbc.password=secret

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu03/erd_table_books.svg?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu03%3Ac
https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu03/uml_class_book.svg?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu03%3Ac

Last update:

2025/09/01 de:modul:ffit:3-jahr:java:learningunits:lu03:c https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756753781

21:09

Damit sind folgende Anpassungen notig:

e Die Eigenschaften der Tabelle werden als Annotationen (@...) in der Java-Klasse gesetzt.
e Ein leerer Standard-Constructor ist nun noétig, damit Hibernate im Hintergrund eine neue Instanz

erstellen

kann.

e int und andere primitive Datentypen werden durch ihre entsprechenden Klassen (Integer,
...) ersetzt.

Dadurch sieht die Klasse Book neu in etwa so aus.

// package ...

jaka

@Entity
@Table(name

@Id

@GeneratedValue(strategy

@Column

@Column

@Column

@Column

rta.persistence.*

"books"
Book

Integer id

name "isbn", nullable = false, length
String isbn

name “title", nullable = false, length
String title

name "author", nullable false, length
String author
name "publication year"

Integer publicationYear

Book

GenerationType.IDENTITY

, unique = true

Book(Integer id, String isbn, String title, String author,
Integer publicationYear

.id id

.isbn isbn

title = title

.author = author

.publicationYear = publicationYear

// toString, equals(), hashCode() if needed

// Getter & Setter

https://wiki.bzz.ch/

Printed on 2026/01/12 02:51

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+entity
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer

2026/01/12 02:51 3/3 LUO3c - Klassen und Tabellen synchronisieren

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756753781

Last update: 2025/09/01 21:09

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756753781

	LU03c - Klassen und Tabellen synchronisieren
	Ausgangslage
	JPA/Hibernate

