
2026/01/12 02:30 1/3 LU03c - Klassen und Tabellen synchronisieren

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03c - Klassen und Tabellen
synchronisieren

Ausgangslage

In der vorhergehenden Lektion haben Sie die Klasse Book aufgrund von der Tabelle books
implementiert. Bei einer Änderung müssen Sie dadurch immer sowohl die Tabelle als auch die Klasse
anpassen, da diese immer aufeinanderpassen müssen.

SQL books Java Book

booksid SERIALisbn VARCHAR(20)title VARCHAR(255)author VARCHAR(255)publication_year INT

Book
-id: int
-title: String
-author: String
-isbn: String
-publicationYear: int
+Book(id: int, isbn: String, title: String, author: String, publicationYear: int)
+getId(): int
+getTitle(): String
+setTitle(title: String): void
+getAuthor(): String
+setAuthor(author: String): void
+getIsbn(): String
+setIsbn(isbn: String): void
+getPublicationYear(): int
+setPublicationYear(publicationYear: int): void
+toString(): String

Um unnötige Arbeitsschritte zu vermeiden, können wir die eine Seite aus der anderen generieren:

Java-first: Aus den Java-Klassen werden die entsprechenden SQL-Tabellen generiert.
SQL-first: Aus den SQL-Tabellen werden die entsprechende Java-Klassen generiert.

JPA/Hibernate

Wir wählen den Java-first-Ansatz mit JPA/Hibernate.

Die build.gradle wurde im Commit TODO bereits mit den passenden Abhängigkeiten ergänzt. Die
zusätzlich Abhängigkeit zu Hikari dient ausserdem, um Datenbankverbindungen zu cachen.

Ebenfalls existiert eine Konfiguration persistance.xml. Gewisse Einstellungen wie
jakarta.persistence.jdbc.url, jakarta.persistence.jdbc.user oder
jakarta.persistence.jdbc.password werden nicht mit der Konfigurationsdatei commited,
sondern können wie bis anhin in config.properties geschrieben und ersetzen die bisherigen
Variabeln.

Vorher Nachher
DB_URL=jdbc:postgresql://localhost:5432/localdb
DB_USER=localuser
DB_PASSWORD=secret

jakarta.persistence.jdbc.url=jdbc:postgresql://localhost:5432/localdb
jakarta.persistence.jdbc.user=localuser
jakarta.persistence.jdbc.password=secret

https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu03/erd_table_books.svg?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu03%3Ac
https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu03/uml_class_book.svg?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu03%3Ac

Last update:
2025/09/01
21:31

de:modul:ffit:3-jahr:java:learningunits:lu03:c https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756755108

https://wiki.bzz.ch/ Printed on 2026/01/12 02:30

Im Java-Code sind ausserdem folgende Anpassungen nötig:

Die Eigenschaften der Tabelle werden als Annotationen (@…) in der Java-Klasse gesetzt.
Ein leerer Standard-Constructor ist nun nötig, damit Hibernate im Hintergrund eine neue Instanz
erstellen kann.
int und andere primitive Datentypen werden durch ihre entsprechenden Klassen (Integer,
…) ersetzt.

Dadurch sieht die Klasse Book neu in etwa so aus. Der Pfad ch.bzz.model ist auch in
persistence.xml hinterlegt und wird in de Tests vorausgesetzt. Verschieben Sie daher die Klasse
entsprechend.

package ch.bzz.model;

import jakarta.persistence.*;

@Entity
@Table(name = "books")
public class Book {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Integer id;

 @Column(name = "isbn", nullable = false, length = 20, unique = true)
 private String isbn;

 @Column(name = "title", nullable = false, length = 255)
 private String title;

 @Column(name = "author", nullable = false, length = 255)
 private String author;

 @Column(name = "publication_year")
 private Integer publicationYear;

 public Book(){}

 public Book(Integer id, String isbn, String title, String author,
Integer publicationYear) {
 this.id = id;
 this.isbn = isbn;
 this.title = title;
 this.author = author;
 this.publicationYear = publicationYear;
 }

 // toString, equals(), hashCode() if needed
 ...

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+entity
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer

2026/01/12 02:30 3/3 LU03c - Klassen und Tabellen synchronisieren

BZZ - Modulwiki - https://wiki.bzz.ch/

 // Getter & Setter
 ...

Um Objekte von der Datenbank zu lesen kann mittels EntityManager das entsprechende Abfrage
ausgeführt werden. Zum Speichern kann persist oder merge (überschreiben falls vorhanden)
genutzt werden.

 public List<Book> getAll(int limit) {
 try (EntityManagerFactory emf =
Persistence.createEntityManagerFactory("localPU", <PROPERTIES>);
 EntityManager em = emf.createEntityManager()) {
 var query = em.createQuery("SELECT b FROM Book b ORDER BY id",
Book.class);
 if (limit > 0) {
 query.setMaxResults(limit);
 }
 return query.getResultList();
 }
 }

 public void saveAll(List<Book> books) {
 try (EntityManagerFactory emf =
Persistence.createEntityManagerFactory("localPU", <PROPERTIES>);
 EntityManager em = emf.createEntityManager()) {
 try {
 em.getTransaction().begin();
 books.forEach(em::merge);
 em.getTransaction().commit();
 } catch (RuntimeException e) {
 if (em.getTransaction().isActive()) {
 em.getTransaction().rollback();
 }
 log.error("Error during saving of books to the database:",
e);
 }
 }
 }

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756755108

Last update: 2025/09/01 21:31

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+runtimeexception
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756755108

	LU03c - Klassen und Tabellen synchronisieren
	Ausgangslage
	JPA/Hibernate

