2026/01/12 02:51 1/3 LUO3c - Klassen und Tabellen synchronisieren

LUO3c - Klassen und Tabellen
synchronisieren

Ausgangslage

In der vorhergehenden Lektion haben Sie die Klasse Book aufgrund von der Tabelle books
implementiert. Bei einer Anderung miissen Sie dadurch immer sowohl die Tabelle als auch die Klasse
anpassen, da diese immer aufeinanderpassen mussen.

SQL books Java Book
Book
-id: int
-title: String
-author: String
publication_year INT | | Sisbn: String

-publicationYear: int

+Book(id: int, isbn: String, title: String, author: String, publicationYear: int)
+getld(): int

+getTitle(): String

+setTitle(title: String): void

+getAuthor(): String

+setAuthor(author: String): void

+getlsbn(): String

+setlsbn(isbn: String): void
+getPublicationYear(): int
+setPublicationYear(publicationYear: int): void
+toString(): String

Um unndétige Arbeitsschritte zu vermeiden, kdnnen wir die eine Seite aus der anderen generieren:

e Java-first: Aus den Java-Klassen werden die entsprechenden SQL-Tabellen generiert.
e SQL-first: Aus den SQL-Tabellen werden die entsprechende Java-Klassen generiert.

JPA/Hibernate

Wir wahlen den Java-first-Ansatz mit JPA/Hibernate.

Die build.gradle wurde im Commit TODO bereits mit den passenden Abhangigkeiten erganzt. Die
zusatzlich Abhangigkeit zu Hikari dient ausserdem, um Datenbankverbindungen zu cachen.

Ebenfalls existiert eine Konfiguration persistance.xml. Gewisse Einstellungen wie
jakarta.persistence.jdbc.url, jakarta.persistence.jdbc.user oder
jakarta.persistence. jdbc.password werden nicht mit der Konfigurationsdatei commited,
sondern kdnnen wie bis anhin in config.properties geschrieben und ersetzen die bisherigen
Variabeln.

Vorher Nachher

DB _URL=jdbc:postgresql://localhost:5432/1ocaldb|jakarta.persistence.jdbc.url=jdbc:postgresql://localhost:5432/1ocaldb
DB USER=localuser jakarta.persistence.jdbc.user=1localuser

DB _PASSWORD=secret jakarta.persistence.jdbc.password=secret

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu03/erd_table_books.svg?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu03%3Ac
https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu03/uml_class_book.svg?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu03%3Ac

Last update:
2025/09/01 de:modul:ffit:3-jahr:java:learningunits:lu03:c https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756755809
21:43

Im Java-Code sind ausserdem folgende Anpassungen nétig:

e Die Eigenschaften der Tabelle werden als Annotationen (@...) in der Java-Klasse gesetzt.

e Ein leerer Standard-Constructor ist nun noétig, damit Hibernate im Hintergrund eine neue Instanz
erstellen kann.

e int und andere primitive Datentypen werden durch ihre entsprechenden Klassen (Integer,
...) ersetzt.

Dadurch sieht die Klasse Book neu in etwa so aus. Der Pfad ch.bzz.model ist auch in
persistence.xml hinterlegt und wird in de Tests vorausgesetzt. Verschieben Sie daher die Klasse
entsprechend.

ch.bzz.model

jakarta.persistence.*

@Entity
@Table(name = "books"
Book
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY
Integer id
@Column(name “"isbn", nullable = false, length , unique = true

String isbn

@Column (name "title", nullable false, length
String title

@Column(name "author", nullable = false, length
String author

@Column(name = "publication year"
Integer publicationYear

Book

Book(Integer id, String isbn, String title, String author,
Integer publicationYear
.id = id
.isbn = isbn
.title = title
.author = author
.publicationYear = publicationYear

// toString, equals(), hashCode() if needed

https://wiki.bzz.ch/ Printed on 2026/01/12 02:51

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+entity
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer

2026/01/12 02:51 3/3 LUO3c - Klassen und Tabellen synchronisieren

// Getter & Setter

Um Objekte von der Datenbank zu lesen kann mittels EntityManager das entsprechende Abfrage
ausgefuhrt werden. Zum Speichern kann persist oder merge (Uberschreiben falls vorhanden)
genutzt werden. Bei den <PROPERTIES> werden die Properties von config.properties
mitgegeben.

EntityManagerFactory emf
Persistence.createEntityManagerFactory("localPU", <PROPERTIES

List<Book> getAll(int limit
EntityManager em = emf.createEntityManager
var query em.createQuery("SELECT b FROM Book b ORDER BY id",
Book.
limit
query.setMaxResults (limit

query.getResultList

void saveAll(List<Book> books
EntityManager em = emf.createEntityManager

em.getTransaction().begin

books. em: :merge

em.getTransaction().commit
RuntimeException e
em.getTransaction().isActive
em.getTransaction().rollback

log.error("Error during saving of books to the database:",

Schreiben Sie Ihren Code so um, dass die Book-Objekte via Hibernate gelesen und geschrieben
werden und Uberprufen Sie das Resultat mit den bestehenden Tests.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: A

https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756755809 i lJIE"{-. 0
ST

=1

Last update: 2025/09/01 21:43 (LIl B Sl

BZZ - Modulwiki - https://wiki.bzz.ch/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+book
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+runtimeexception
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu03/c?rev=1756755809

	LU03c - Klassen und Tabellen synchronisieren
	Ausgangslage
	JPA/Hibernate

