2026/01/12 15:50 1/3 LUO5b - Prinzipien 2 (LSP, ISP)

LUOSb - Prinzipien 2 (LSP, ISP)

Prinzipien

e DRY (Don’t Repeat Yourself)

e SRP (Single Responsibility Principle)

e OCP (Open/Closed Principle)

e LSP (Liskov Substitution Principle)

¢ ISP (Interface Segregation Principle)

e DIP (Dependency Inversion Principle)

e KISS (Keep It Simple, Stupid)

e YAGNI (You Ain’t Gonna Need It)

e S0C (Separation of Concerns)

e Law of Demeter (Principle of Least Knowledge)

SOLID steht wiederum fur SRP, OCP, LSP, ISP, DIP

Wir fokussieren uns dieses Mal auf LSP und ISP.
LSP

Das Liskov Substitution Principle besagt, dass ein Programm, das Objekte einer Basisklasse T
verwendet, auch mit Objekten der davon abgeleiteten Klasse S korrekt funktionieren muss, ohne
dabei das Programm zu verandern.

Folgendes Beispiel verletzt das LSP, weil ein Kreis zwar eine Spezialform einer Ellipse ist, aber in
diesem Fall nicht mit den Eigenschaften der Klasse El1ipse kompatibel ist.setRadiusX() und
setRadiusY () konnen nach wie vor auf dem Kreis aufgerufen werden und dadurch unerwinschte
Nebeneffekte hervorrufen.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2025/09/15 de:modul:ffit:3-jahr:java:learningunits:lu05:b https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu05/b?rev=1757933673

12:54
@ Shape

-centerX: double
-centerY: double

+draw(): void

+getCenterX(): double
+setCenterX(centerX: double): void
+getCenterY(): double
+setCenterY{centerY: double): void

@ Ellipse

-radiusX: double
-radiusY: double
-rotation: double

+Ellipse{radiusX: double, radiusY: double, rotation: double)
+draw(): void

+getRadiusX(}): double

+setRadiusX(radiusX: double): void

+getRadiusY(): double

+setRadiusY(radiusY: double): void

+getRotation(): double

+setRotation(rotation: double): void

© Circle

+Circle{radius: double)
+draw(): void
+setRadius(radius: double): void

Besser ware es die Klasse Circle direkt von Shape erben zu lassen.
ISP

Das Interface Segregation Principle besagt, dass Interfaces nur logisch untrennbare Methoden
vorgeben sollten. Das heisst in diesem Beispiel, die Methoden printDocument, scanDocument und
faxDocument sollten nur in einem gemeinsamen Interface definiert werden, falls samtliche
(zuklinftige) Implementierungen alle Methoden zwingend bendtigen.

® Frinter

~printDocument(content: String): void
~scanDocument(): void
~faxDocument(content: 5tring): void

https://wiki.bzz.ch/ Printed on 2026/01/12 15:50

https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu05/uml_example_lsp.png?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu05%3Ab
https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu05/uml_example_isp_1.png?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu05%3Ab

2026/01/12 15:50 3/3 LUO5b - Prinzipien 2 (LSP, ISP)

Ist dies nicht der Fall, so sollte man die Interfaces aufteilen. Dadurch kénnen zukunftige Klassen nur
einzelne Interfaces implementieren und sind nicht gezwungen irgendwelche Dummy-
Implementierungen zu erstellen.

® Printer @ Scanner @ Fax

~printDocument({content: String): void ~scanDocument(): void ~faxDocument{content: String): void

a N B =

-

[~ | -
I = i -

i

© SimplePrinter

@ MultiFunctionPrinter

+printDocument(content: String): void
+printDocument(content: String): void +scanDocument(): void

+faxDocument(content: String): void

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu05/b?rev=1757933673

Last update: 2025/09/15 12:54

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu05/uml_example_isp_2.png?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu05%3Ab
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu05/b?rev=1757933673

	LU05b - Prinzipien 2 (LSP, ISP)
	Prinzipien
	LSP
	ISP

