2026/02/04 06:04 1/3 LUO6b - Login & Authentication

LUO6Db - Login & Authentication

Login

Anforderung 6: Ein Benutzer in der Datenbank soll sich via /auth/login anmelden konnen.

Sie erhalten die JWT-Funktionalitaten mit dem Commit 07b12a2. Implementieren Sie eine POST-API,
welche als JSON-Body die E-Mailadresse (,email”) und das Klartextpasswort (,password”) akzeptiert.

Die Implementation kdnnte grob so aussehen:

var json ctx.bodyValidator(Map.
.check(m m.containsKey("email"), "email is required"
.check(m m.containsKey("password"), "password is required"
.get

String inputEmail String) json.get("email"
String inputPassword String) json.get("password"

. // TODO: find user in database with given email

byte storedSalt = Base64.getDecoder().decode(user.getPasswordSalt
byte storedHash = Base64.getDecoder().decode(user.getPasswordHash

PasswordHandler.verifyPassword(inputPassword, storedHash, storedSalt
String jwt = JwtHandler.createJwt(inputEmail, user.getId
ctx.json(Map.of("token", jwt

// TODO: Use the same error message if the user is not found and if the
password is wrong
ctx.status(401).json(Map.of("error", "Invalid email or password"

Mit Postman konnen Sie lhre API testen.
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http:/flocalhost:7070/auth/login

Headers (2) E
B hidden

Bulk Edit

Content-Type application/json

http://localhost:7070/auth/login

Body

Analysieren Sie das zuruckgelieferte JWT auf https://www.jwt.io/

Authentication

Anforderung 7: Ein Benutzer mit einem gultigen JWT soll sein Passwort und via /auth/change-
password andern kdnnen kénnen.

Implementieren Sie eine PUT-API, welche als JSON-Body das alte Passwort (,,oldPassword“) und das
neue Passwort (,newPassword“) akzeptiert. Bei der Authorization wird ein zuvor generiertes JWT
mitgegeben. Der ,,Content-Type“-Header ist gleich wie bei der POST-API.

http://localhost:7070/auth/change-password
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Die Implementation kdnnte grob so aussehen:

String authHeader ctx.header("Authorization"
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String token = authHeader.substring("Bearer ".length

userId JwtHandler.getUserIdFromJwt (token); // This also includes the
verification

var json ctx.bodyValidator(Map.
.check(m m.containsKey("oldPassword"), "oldPassword is required"
.check(m m.containsKey ("newPassword" ), "newPassword is required"
.get

String oldPassword String) json.get("oldPassword"
String newPassword String) json.get("newPassword"

. // TODO: find user by id

byte storedSalt = Base64.getDecoder().decode(user.getPasswordSalt
byte storedHash = Base64.getDecoder().decode(user.getPasswordHash

PasswordHandler.verifyPassword(oldPassword, storedHash, storedSalt
byte newHash PasswordHandler.hashPassword(newPassword, storedSalt
user.setPasswordHash(Base64.getEncoder().encodeToString(newHash

userPersistor.save(user
ctx.json(Map.of("message", "Password changed successfully"

Testen Sie die Implementation manuell mit Postman.
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