2026/02/04 06:04 1/3 LUO6b - Login & Authentication

LUO6Db - Login & Authentication

Login

Anforderung 6: Ein Benutzer in der Datenbank soll sich via /auth/login anmelden konnen.

Sie erhalten die JWT-Funktionalitaten mit dem Commit 07b12a2. Implementieren Sie eine POST-API,
welche als JSON-Body die E-Mailadresse (,email”) und das Klartextpasswort (,password”) akzeptiert.

Die Implementation kdnnte grob so aussehen:

var json ctx.bodyValidator(Map.
.check(m m.containsKey("email"), "email is required"
.check(m m.containsKey("password"), "password is required"
.get

String inputEmail String) json.get("email"
String inputPassword String) json.get("password"

. // TODO: find user in database with given email

byte storedSalt = Base64.getDecoder().decode(user.getPasswordSalt
byte storedHash = Base64.getDecoder().decode(user.getPasswordHash

PasswordHandler.verifyPassword(inputPassword, storedHash, storedSalt
String jwt = JwtHandler.createJwt(inputEmail, user.getId
ctx.json(Map.of("token", jwt

// TODO: Use the same error message if the user is not found and if the
password is wrong
ctx.status(401).json(Map.of("error", "Invalid email or password"

Mit Postman konnen Sie lhre API testen.

BZZ - Modulwiki - https://wiki.bzz.ch/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+map
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+map
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+map

Last update:

2025/09/23 de:modul:ffit:3-jahr:java:learningunits:lu06:b https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu06/b?rev=1758583621
01:27

http:/flocalhost:7070/auth/login

Headers (2) E
B hidden

Bulk Edit

Content-Type application/json

http://localhost:7070/auth/login

Body

Analysieren Sie das zuruckgelieferte JWT auf https://www.jwt.io/

Authentication

Anforderung 7: Ein Benutzer mit einem gultigen JWT soll sein Passwort und via /auth/change-
password andern kdnnen kénnen.

Implementieren Sie eine PUT-API, welche als JSON-Body das alte Passwort (,,oldPassword“) und das
neue Passwort (,newPassword“) akzeptiert. Bei der Authorization wird ein zuvor generiertes JWT
mitgegeben. Der ,,Content-Type“-Header ist gleich wie bei der POST-API.

http://localhost:7070/auth/change-password

eyJhbGeiOlJIuzMANC 9. ey zdWIIC

Die Implementation kdnnte grob so aussehen:

String authHeader ctx.header("Authorization"

https://wiki.bzz.ch/ Printed on 2026/02/04 06:04


https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu06/postman_login_header.png?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu06%3Ab
https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu06/postman_login_body.png?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu06%3Ab
https://www.jwt.io/
https://wiki.bzz.ch/_detail/de/modul/ffit/3-jahr/java/learningunits/lu06/postman_put_auth.png?id=de%3Amodul%3Affit%3A3-jahr%3Ajava%3Alearningunits%3Alu06%3Ab
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/04 06:04 3/3 LUO6b - Login & Authentication

String token = authHeader.substring("Bearer ".length

userId JwtHandler.getUserIdFromJwt (token); // This also includes the
verification

var json ctx.bodyValidator(Map.
.check(m m.containsKey("oldPassword"), "oldPassword is required"
.check(m m.containsKey ("newPassword" ), "newPassword is required"
.get

String oldPassword String) json.get("oldPassword"
String newPassword String) json.get("newPassword"

. // TODO: find user by id

byte storedSalt = Base64.getDecoder().decode(user.getPasswordSalt
byte storedHash = Base64.getDecoder().decode(user.getPasswordHash

PasswordHandler.verifyPassword(oldPassword, storedHash, storedSalt
byte newHash PasswordHandler.hashPassword(newPassword, storedSalt
user.setPasswordHash(Base64.getEncoder().encodeToString(newHash

userPersistor.save(user
ctx.json(Map.of("message", "Password changed successfully"

Testen Sie die Implementation manuell mit Postman.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu06/b?rev=1758583621 -

Last update: 2025/09/23 01:27

BZZ - Modulwiki - https://wiki.bzz.ch/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+map
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+map
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu06/b?rev=1758583621

	LU06b - Login & Authentication
	Login
	Authentication


