
2026/02/03 13:37 1/3 LU10a - Umgang mit Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

LU10a - Umgang mit Exceptions

Spring ResponseStatusException

Allgemein gilt, dass Exceptions in Bezug auf die Performanz schlechter abschneiden als die
entsprechenden Checks. Daher sollte man Exceptions nie in „Schönwetter“-Fällen benutzen, sondern
höchstens in unerwarteten Situationen. Ein ungültiger API-Aufruf ist in unserem Fall aber unerwartet
und kann mittels einer Exception gelöst werden. Werden aber viele ungültige API-Aufrufe erwartet,
sollte man eine Exception-freie Alternative in Erwägung ziehen.

Spring bietet eine sehr einfache Version, um Fehlerfälle mittels Exceptions abzuhandeln. Dabei wird
direkt automatisch eine Antwort mit dem entsprechenden HTTP-Statuscode erstellt und
zurückgeschickt.

Im nachfolgenden Beispiel wird jeweils ein Project-Objekt geladen und falls kein Objekt in der
Datenbank vorhanden ist, wird der Statuscode 404 zurückgegeben.

Lange Variante Verkürzte Variante Variante mit Exception
Optional<Project> optionalProject =
projectRepository.findById(projectName);
if(optionalProject.isEmpty()){
 return
ResponseEntity.notFound().build();
}
Project project = optionalProject.get();

Project project =
projectRepository.findById(projectName).orElse(null);
if(null == project){
 return ResponseEntity.notFound().build();
}

Project project =
projectRepository.findById(projectName).orElseThrow(()
-> new ResponseStatusException(HttpStatus.NOT_FOUND,
"Project not found"));

Ein sehr grosser Vorteil der dritten Variante ist die Wiederverwendbarkeit: Ein ResponseEntity-Objekt
kann nur in der API-Methode zurückgegeben werden. Eine ResponseStatusException kann aber auch
in einer verschachtelten Methode geworfen werden. Das erlaubt, dass man Methoden, die man zum
Beispiel bei mehreren API-Methoden benötigt, bequem auslagern kann.

Validierung des JWT

In der vorgeschlagenen Klasse JwtUtil.java gibt es bereits eine Möglichkeit, um ein JWT zu prüfen
(Siehe auch LU08.A05 Register/Login).

public boolean validateToken(String token) {
 try {
Jwts.parserBuilder().setSigningKey(key).build().parseClaimsJws(token);
 return true;
 } catch (Exception e) {
 return false;
 }
}

Kleine Wiederholung

Setzt man Exceptions ein, sollte man diese auch loggen oder
weiterschicken (gegebenenfalls sogar ans Frontend). Ein
„catch“ ohne Verwendung der gefangenen Exception, wie im

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

Last update: 2025/11/10 00:02 de:modul:ffit:3-jahr:java:learningunits:lu10:a https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu10/a

https://wiki.bzz.ch/ Printed on 2026/02/03 13:37

Beispiel, ist zu vermeiden.

Wenn nun zudem Informationen wie das „Subject“ aus dem JWT herausgelesen werden müssen,
ergibt es keinen Sinn, eine separate „Exception“-basierte Validierung zu machen. Man kann die
Validierung und das Auslesen direkt kombinieren. Nutzt man zudem die ResponseStatusException,
hat man eine Methode, die man in mehreren API-Methoden einsetzen kann.

public String verifyTokenAndExtractSubject() {
 try{
 String token = extractTokenFromHeader();
 return extractSubject(token);
 } catch (Exception e) {
 // Exception mitschicken
 // throw new ResponseStatusException(HttpStatus.UNAUTHORIZED,
"Invalid token", e);

 // Exception loggen
 log.warn("Invalid token", e);
 throw new ResponseStatusException(HttpStatus.UNAUTHORIZED, "Invalid
token");
 }
}

private String extractSubject(String token) {
 return Jwts.parserBuilder()
 .setSigningKey(key)
 .build()
 .parseClaimsJws(token)
 .getBody()
 .getSubject();
}

private String extractTokenFromHeader() {
 ServletRequestAttributes attributes = (ServletRequestAttributes)
RequestContextHolder.getRequestAttributes();
 if (attributes == null){
 return null;
 }
 String authHeader = attributes.getRequest().getHeader("Authorization");
 if (authHeader == null || !authHeader.startsWith("Bearer ")) {
 return null;
 }
 return authHeader.substring(7);
}

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/03 13:37 3/3 LU10a - Umgang mit Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu10/a

Last update: 2025/11/10 00:02

https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/ffit/3-jahr/java/learningunits/lu10/a

	LU10a - Umgang mit Exceptions
	Spring ResponseStatusException
	Validierung des JWT

