
2026/02/03 13:53 1/4 LU04c - Huffman

BZZ - Modulwiki - https://wiki.bzz.ch/

LU04c - Huffman

Siehe auch http://de.wikipedia.org/wiki/Datenkompression

Einleitung

Die Huffman-Codierung funktioniert ähnlich wie das Morsealphabet. Es wird aber kein fest
vorgegebener Baum mit den Zeichen und Codes verwendet. Stattdessen wird die Codierung während
der Verarbeitung erstellt. Dadurch wird für jede Art von Daten das häufigste Zeichen den kürzesten
Code erhalten.

Vorgehen

Um das Vorgehen verständlich zu machen, verwenden wir ein Beispiel. Wir wollen den folgenden Text
komprimieren: „bitte_nehmen_sie_ihren_abfall_mit“.

1. Notiere alle Zeichen und deren Häufigkeit

Jedes Zeichen wird genau 1x notiert. Als Knoten (Kreis) wird die Häufigkeit des Zeichens notiert.

2. Verbinde jeweils zwei Knoten

Wir suchen zwei Knoten mit den kleinsten Zahlen, die noch keine Verbindung nach oben haben. Diese
Knoten verbinden wir zu einem neuen Knoten und addieren die Häufigkeit. Immer wenn sie eine
Verbindung nach oben Ziehen, steht der Ast rechts für den binären Code „1“ und der linke Ast für den
binären Code „0“.

3. Wiederhole

Der Schritt 2 wird wiederholt, bis nur noch ein Knoten übrig sind.

Fertiger Baum

Durch dieses Vorgehen wird gleichzeitig sichergestellt, dass die Codes eindeutig sind. Kein Code ist
gleichzeitig der Anfang eines anderen Codes. Dadurch ist die Verwendung eines Trennzeichens

http://de.wikipedia.org/wiki/Datenkompression
https://wiki.bzz.ch/_detail/modul/m114/learningunits/lu04/huffman01.png?id=de%3Amodul%3Am114%3Alearningunits%3Alu04%3Ahuffman
https://wiki.bzz.ch/_detail/modul/m114/learningunits/lu04/huffman02.png?id=de%3Amodul%3Am114%3Alearningunits%3Alu04%3Ahuffman
https://wiki.bzz.ch/_detail/modul/m114/learningunits/lu04/huffman03.png?id=de%3Amodul%3Am114%3Alearningunits%3Alu04%3Ahuffman
https://wiki.bzz.ch/_detail/modul/m114/learningunits/lu04/huffman09.png?id=de%3Amodul%3Am114%3Alearningunits%3Alu04%3Ahuffman

Last update:
2026/01/28
21:12

de:modul:m114:learningunits:lu04:huffman https://wiki.bzz.ch/de/modul/m114/learningunits/lu04/huffman?rev=1769631167

https://wiki.bzz.ch/ Printed on 2026/02/03 13:53

überflüssig.

Im Moodle-Kurs finden Sie das Lernprogramm:
HuffmanShannonFano.jar. Mit diesem Programm können Sie
das Erstellen von Huffman-Bäumen üben.

Zum Starten geben Sie in der Konsole ein:

java -jar HuffmanShannonFano.jar

Codierter Text

Codetabelle

Aus dem Baum lässt sich die Codetabelle mit den Zeichen und ihren Codes ableiten.

Zeichen Häufigkeit Code
_ 5 110
e 5 111
i 4 100
n 3 000
t 3 001
a 2 0100
b 2 0101
h 2 0110
m 2 0111
l 2 1010
r 1 101100
f 1 101101
s 1 10111

Je häufiger das Zeichen im Text vorkommt, desto kürzer ist der Code.

Codierter Text

0101 100 001 001 111 110 000 111 0110 0111 111 000 110 10111 100 111 110 100
0110 101100 111 000 110 0100 0101 101101 0100 1010 1010 110 0111 100 001

Zur Veranschaulichung wurde hier nach jedem Zeichen ein Leerschlag eingefügt. In einer Huffman-
codierten Datei würden alle Bits ohne Unterbruch hintereinander stehen:

0101100001001111110000111011001111110001101011110011111010001101011001110001

2026/02/03 13:53 3/4 LU04c - Huffman

BZZ - Modulwiki - https://wiki.bzz.ch/

10010001011011010100101010101100111100001

Kompressionsfaktor

Vergleichen wir den Speicherplatz des ursprünglichen Textes mit dem komprimierten Code:

bitte_nehmen_sie_ihren_abfall_mit: 33 ASCII-Zeichen à 8 Bit = 264 Bit
Huffman-Code: 117 Bit

 117 * 100
Kompressionsfaktor = 100 - ---------- = 55.7%
 264

In diesem vereinfachten Beispiel haben wir den Speicherplatz für die Codetabelle ausser acht
gelassen.

Decodieren

Zum Decodieren wird jeder Code durch das entsprechende Zeichen ersetzt. Dies wird erleichtert,
wenn die Codetabelle nach dem Code aufsteigend sortiert ist.

Code Zeichen
000 n
001 t
0100 a
0101 b
0110 h
0111 m
100 i
1010 l
101100 r
101101 f
10111 s
110 _
111 e

Aus dem codierten Text werden so viele Bits genommen, bis diese Bitkombination zu einem Code in
der Tabelle passt:

0101100001001111110000111011001111110001101011110011111010001101011001110001
10010001011011010100101010101100111100001

0 ⇒ Passt zu keinem Code1.
01 ⇒ Passt zu keinem Code2.
010 ⇒ Passt zu keinem Code3.
0101 ⇒ Buchstabe „b“4.

Last update:
2026/01/28
21:12

de:modul:m114:learningunits:lu04:huffman https://wiki.bzz.ch/de/modul/m114/learningunits/lu04/huffman?rev=1769631167

https://wiki.bzz.ch/ Printed on 2026/02/03 13:53

Nun werden diese Bits aus dem codierten Text entfernt und das Verfahren wird mit den nächsten Bits
wiederholt:

1000010011111100001110110011111100011010111100111110100011010110011100011001
0001011011010100101010101100111100001

1 ⇒ Passt zu keinem Code1.
10 ⇒ Passt zu keinem Code2.
100 ⇒ Buchstabe „i“3.

Einsatz der Huffman-Codierung

Aktuelle Kompressionsprogramme nutzen mehrere Kompressionsverfahren nacheinander. Dabei wird
oft als letzte Stufe die Huffman-Codierung angewandt.

Die Huffman-Codierung wird auch bei Bildformaten eingesetzt. Zum Beispiel verwendet das PNG-
Format unter anderem eine Huffman-Codierung.

m114-A0G

 Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m114/learningunits/lu04/huffman?rev=1769631167

Last update: 2026/01/28 21:12

https://wiki.bzz.ch/tag/m114-a0g?do=showtag&tag=m114-A0G
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m114/learningunits/lu04/huffman?rev=1769631167

	LU04c - Huffman
	Einleitung
	Vorgehen
	1. Notiere alle Zeichen und deren Häufigkeit
	2. Verbinde jeweils zwei Knoten
	3. Wiederhole
	Fertiger Baum

	Codierter Text
	Codetabelle
	Codierter Text
	Kompressionsfaktor

	Decodieren
	Einsatz der Huffman-Codierung

