2026/01/11 05:16 1/3 LU02.L02 - ML Programmierung

LUO2.L02 - ML Programmierung

Voraussetzung

pip install pandas scikit-learn joblib
Python-Skript: ml_basics _shop.py

import pandas as pd

from sklearn.model selection import train_test split

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.linear model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy score, confusion matrix,
classification report

import joblib

#
d
#
X = data.drop("buy", axis=1)
y
#

= data["buy"]
S
Train / Test Split
B oo i o e e eao o=

X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)

log reg pipeline = Pipeline([
("scaler", StandardScaler()),
("model", LogisticRegression())
1)
#
log reg pipeline.fit(X train, y train)
y pred lr = log reg pipeline.predict(X test)

#
print("Logistische Regression")
print("Accuracy:", accuracy score(y test, y pred 1lr))

print("Confusion Matrix:\n", confusion matrix(y test, y pred 1r))

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2026/01/05
13:32

de:modul:m245:learningunits:lu02:loesungen:102 https://wiki.bzz.ch/de/modul/m245/learningunits/lu02/loesungen/I02?rev=1767616342

print("Classification Report:\n", classification report(y test, y pred 1lr))

tree model = DecisionTreeClassifier(random state=42)

tree model.fit(X train, y train)

y pred tree = tree model.predict (X test)

#

print("\nDecision Tree")

print("Accuracy:", accuracy score(y test, y pred tree))
print("Confusion Matrix:\n", confusion matrix(y test, y pred tree))
print("Classification Report:\n", classification report(y test,

y pred tree))

#
% cooccoccocooocoooccocsoooocooooc
Bestes Modell speichern
S 0 e e s
joblib.dump(log reg pipeline, "best model.joblib")
#
% cooccoccocoooCoooccoocSoooocooooco
Neue Vorhersage
% coocococcooooooooocCcoCoooooooooC
new customer = pd.DataFrame([{
"age": 32,
“past purchases": 5,
"“minutes on page": 6.5
)
#

loaded model = joblib.load("best model.joblib")
prediction = loaded model.predict(new customer)

#

print("\nVorhersage fuer neuen Kunden:", prediction[0])

3. Modellvergleich

Kriterium Logistische Regression Decision Tree
Interpretierbarkeit/hoch mittel
Overfitting-Gefahr|gering hoch
Skalierung noetig ja nein
Didaktisch sinnvoll sehr ja

Fazit: Bei kleinen, sauberen Datensaetzen ist die Logistische Regression meist stabiler. Decision Trees
sind anschaulich, aber uebermotiviert - sie merken sich gern alles.

https://wiki.bzz.ch/ Printed on 2026/01/11 05:16

2026/01/11 05:16 3/3 LU02.L02 - ML Programmierung

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m245/learningunits/lu02/loesungen/l02?rev=1767616342

Last update: 2026/01/05 13:32

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m245/learningunits/lu02/loesungen/l02?rev=1767616342

	LU02.L02 - ML Programmierung
	Voraussetzung
	Python-Skript: ml_basics_shop.py
	3. Modellvergleich

