2026/02/03 12:08 1/9 LUO2: Fonts, CSS-Variablen, Cascade & Media Queries

LUO2: Fonts, CSS-Variablen, Cascade &
Media Queries

Ziel von LUO2: Sie bringen Ihr Projekt ,Landingpage Alarado” optisch naher ans
Figma-Design, indem Sie

1. die Schrift (Google Font) einbinden,
2. Designwerte als CSS-Variablen definieren und
3. Mit Media Queries das Responsive-Layout fur Mobile umsetzen.

Lernziele

e Sie kdnnen eine Google Font per <link> einbinden und sinnvoll als font-family verwenden.

* Sie verstehen den Unterschied zwischen px, em und rem und setzen Schriftgrossen konsistent
um.

e Sie kdnnen CSS-Variablen in : root definieren und mit var(..) wiederverwenden.

* Sie verstehen die CSS-Cascade (Reihenfolge/Uberschreiben/Vererbung).

¢ Sie kdnnen Media Queries fur Responsive Design nutzen und mit DevTools testen.

Fonts im Web

Google Fonts via CDN

In vielen Projekten werden Fonts schnell Gber ein CDN eingebunden (z.B. Google Fonts) - das ist
praktisch fur Prototypen und Schulprojekte.

Typischer Aufbau im <head>:

<link rel="preconnect" href="https://fonts.googleapis.com" />

<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />

<link
href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;500;600;700&
display=swap" rel="stylesheet" />

Dann im CSS verwenden:

body
"Poppins", sans-serif

Hinweis zur Praxis: In professionellen Projekten werden Fonts haufig lokal im

BZZ - Modulwiki - https://wiki.bzz.ch/


http://december.com/html/4/element/link.html
http://december.com/html/4/element/link.html
http://december.com/html/4/element/link.html

Last
update:
2026/02/02
00:32

de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988732

Projekt gespeichert (Datenschutz/Performance/Offline-Fahigkeit). Fur dieses
Modul genligt zu Beginn das Einbinden via <link>.

Besser in der Praxis: Fonts lokal speichern (kurz)

Mit @font - face kénnen Sie eine Schrift von Ihrer eigenen Projekt-URL laden und einen Namen
vergeben.

@font-face
"Poppins”

src: url("./fonts/Poppins-Regular.woff2") format("woff2"

normal

Wichtige Font-Eigenschaften (Repetition)

font-family: Schrift-Familie (immer mit Fallbacks arbeiten, z.B. sans-serif)
font-weight: Schriftschnitt - ,,Dicke” (z.B. 400 normal, 700 bold - nicht jede Schrift hat alle
Stufen)

font-style: normal/italic

text-transform: Darstellung (uppercase/lowercase/capitalize)

line-height: ZeilenhGhe (Best Practice: ohne Einheit, z.B. 1.4)

Einheiten bei Fonts: px vs em vs rem (mit Accessibility)

Kurzdefinitionen

e px: ,fixe" Design-Einheit. 16px bleibt rechnerisch 16px.
» em: relativ zur berechneten Schriftgrosse (font-size) des aktuellen Elements.”
e rem: relativ zur Root-Schriftgrésse (font-size von html).

Warum em/rem oft besser sind als px
1) Skalierung & Nutzer-Einstellungen (Accessibility)
Viele Nutzerinnen und Nutzer verandern bewusst die Standard-Schriftgrosse im Browser oder

verwenden Zoom bzw. Betriebssystem-Einstellungen (z.B. Sehhilfe, grosse Schrift).

e Mit rem/em ,gehen” lhre Schriftgrossen automatisch mit dieser Einstellung mit, weil sie
relativ gerechnet werden.
¢ Mit px bleiben Sie oft naher an einem ,fixen“ Design - das kann dazu fuhren, dass Text im

https://wiki.bzz.ch/ Printed on 2026/02/03 12:08



2026/02/03 12:08 3/9 LUO2: Fonts, CSS-Variablen, Cascade & Media Queries

Verhaltnis zu Layout-Abstanden schlechter skaliert.

2) Konsistenz uber das ganze Projekt (Designsystem)

Mit rem konnen Sie ein klares System bauen:

e Basisist html { font-size: .. }
e Alles andere wird in rem definiert (z.B. h1l = 4rem, p = 1.125rem)

Damit kénnen Sie das ,,Gesamtbild“ sehr kontrolliert skalieren, ohne jedes Element einzeln
anzufassen.

3) Robustheit bei Komponenten

em ist besonders nutzlich innerhalb von Komponenten:

e Buttons, Badges, Cards kdnnen Abstande (padding/margins) in em bekommen,
¢ 50 bleiben sie proportional zur Textgrésse der Komponente.

Beispiel: Wenn ein Button-Text grésser wird, wachst das Padding automatisch mit - das wirkt
typografisch sauber und verhindert ,,gequetschte” Buttons.

px - wann ist es trotzdem okay?

px ist nicht ,,verboten*, aber Sie sollten wissen, woflr:

e sehr feine Linien (z.B. 1px border)
 pixelgenaue Details, wenn es wirklich fix sein muss
¢ einzelne Sonderfalle im Layout

Viele moderne Designsysteme nutzen rem fur Typografie + Spacing und px nur fur kleine, technische

Details.

em vs rem - wann welches?

e rem: flr globale Typografie (h1, p, nav, Standardtext) - konsistent im ganzen Projekt
* em: fur komponenten-interne Proportionen (Padding, Icon-Grosse, kleine Abstande) -
skaliert mit der Komponente

line-height

Flr Lesbarkeit ist eine passende Zeilenhdhe zentral.
e Best Practice: einheitenlos, z.B. line-height: 1.4;

Einheitenlose line-height skaliert automatisch mit der Schriftgrésse und ist darum sehr stabil -

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2026/02/02
00:32

de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988732

besonders bei Responsive und bei Nutzer-Zoom.

CSS-Variablen (Custom Properties)

Was sind CSS-Variablen?

CSS-Variablen (korrekt: Custom Properties) sind benannte Werte, die Sie einmal zentral definieren
und dann Gberall mit var (..) verwenden. Das spart Copy/Paste und macht Anpassungen viel
einfacher.

Beispiel:

root
--primary: #263fa9
--text: #223344

body
var(--text

button
var(--primary

Warum ist das nutzlich?

* Wiederverwendbarkeit: Farben/Gréssen missen nicht Uberall kopiert werden.
» Wartbarkeit: Eine Anderung in : root wirkt im ganzen Projekt.
e Semantik: —main-text-color ist verstandlicher als #223344.

Vergleich zu Print-Design (z.B. InDesign):
CSS-Variablen sind ahnlich wie Absatz-/Zeichenstile oder ein Designsystem:
Sie definieren Regeln einmal zentral und wenden sie Uberall an.

CSS Cascade (Kaskade) - verstandlich & wichtig

Was ist die Kaskade?

Die CSS-Kaskade ist das Regelwerk, das entscheidet, welche CSS-Regel am
Ende wirklich angewendet wird, wenn mehrere Regeln dasselbe Element
betreffen.

Kurz: Wenn CSS ,streitet”, sagt die Kaskade, wer gewinnt.

https://wiki.bzz.ch/ Printed on 2026/02/03 12:08



2026/02/03 12:08 5/9 LUO2: Fonts, CSS-Variablen, Cascade & Media Queries

Warum ist das wichtig?

In echten Projekten schreiben Sie nicht nur 1 Regel pro Element:

Sie haben Basis-Styles (z.B. body)
Komponenten-Styles (z.B. .menu a)

Zustande (z.B. .active, :hover)

Responsive Regeln (Media Queries)

¢ und manchmal Uberschreibt man spater etwas gezielt

Ohne Kaskade ware unklar, was am Ende gilt.

1) Vererbung (Inheritance): Was , erbt” ein Element?

Einige CSS-Eigenschaften werden vom Eltern-Element an Kinder weitergegeben, wenn das Kind
selbst nichts anderes definiert.

Typisch vererbt (sehr haufig):

e color

e font-family, font-size, font-weight, font-style
e line-height

e text-transform

Typisch NICHT vererbt:

e background-color /background-image
margin / padding

border

width /height

e display

Beispiel:

body
"Poppins", sans-serif
#223344

Alle Textelemente im Body erhalten diese Werte, solange sie nicht selbst etwas anderes setzen.
2) Uberschreiben (Overriding): Wer gewinnt bei Konflikten?

Wenn mehrere Regeln dieselbe Eigenschaft setzen (z.B. color), muss CSS entscheiden, welche gilt.
Das passiert in dieser Reihenfolge:

BZZ - Modulwiki - https://wiki.bzz.ch/



Last

;832}8:2/02 de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988732

00:32

Regel 1: Wichtigkeit ("!important')

e limportant gewinnt fast immer - wird aber nur in Ausnahmefallen empfohlen.

2)
Regel 2: Spezifitat (Specificity)

Je ,genauer” ein Selektor ist, desto starker ist er.
Grob von schwach nach stark:

1. Elementselektor: p, a, header (schwach)
2. Klassenselektor: .menu, .active (starker)
3. ID-Selektor: #hero-section (sehr stark)

Beispiel:

a black /* schwach */

.menu a gray /* starker */

a.active blue /* ahnlich stark wie .menu a (Klasse + Element)
*/

#special a red /* sehr stark */

Regel 3: Reihenfolge im CSS (Last Rule Wins)

Wenn zwei Regeln gleich spezifisch sind, gewinnt die Regel, die spater im CSS steht.

Beispiel:
.menu a gray
.menu a green /* gewinnt, weil spater */

Media Queries und Kaskade: ,,CSS gilt nur wenn Bedingung stimmt*“

Media Queries sind keine ,eigene Welt” - sie folgen denselben Regeln wie oben. Sie sind wie
zusatzliche Regeln, die nur aktiv werden, wenn die Bedingung erfullt ist.

Beispiel:
#hero-section row

@media screen and (width < 1024px
#hero-section column-reverse

https://wiki.bzz.ch/ Printed on 2026/02/03 12:08



2026/02/03 12:08 7/9 LUO2: Fonts, CSS-Variablen, Cascade & Media Queries

Was passiert?

o Uber 1024px gilt: row
e Unter 1024px wird die zweite Regel aktiv und Uberschreibt flex-direction

Media Query Uberschreibt nur dann, wenn sie ,an” ist. Und auch dort gilt: Spezifitat + Reihenfolge
entscheiden.

CSS debuggen
Wenn etwas ,komisch” aussieht, schauen Sie in DevTools: Welche Regel ist

durchgestrichen? Wer gewinnt? Genau das ist die Kaskade.

Media Queries & Responsive Design

Tablet
Desktop - Smartphone
t E J
@media screen and @media screen and @media screen and
(min-width: 1024px) (min-width: 768px) and (max-width: 767px)
s (max-width: 1023px) Lol

{...}

Was macht eine Media Query?

Media Queries erlauben, dass sich das Layout an verschiedene Bildschirmgréssen anpasst, ohne den
Inhalt zu andern - nur die Darstellung wird angepasst.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2026/02/02
00:32

de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988732

Breakpoints: nach Inhalt, nicht nach Geraten

Ein Breakpoint ist eine Bildschirmbreite, bei der Sie Ihr CSS bewusst andern, damit das Layout
wieder gut aussieht. Das passiert meistens tUber eine Media Query, z.B.:

@media (width < 1024px

Was passiert an einem Breakpoint?

Bei einem Breakpoint passen Sie die Darstellung an, weil sonst z.B.:

Elemente uberlappen oder sich gegenseitig verdrangen
Textzeilen extrem lang/kurz werden (schlecht lesbar)
Buttons/Navigation nicht mehr sinnvoll Platz haben

ein 2-Spalten-Layout zu eng wird und unruhig wirkt
horizontales Scrollen entsteht

Ein Breakpoint ist also der Moment, wo das Layout ,kippt*
& und eine andere Anordnung sinnvoller ist.

Beispiel aus unserem Projekt

Unser Desktop-Layout ist 2-spaltig (Text links, Bild rechts). Auf Mobile wird es 1-spaltig, mit dem Bild
zuerst:

@media screen and (width < 1024px

#hero-section
column-reverse; /* Bild oben, Text unten */

Media Queries und Kaskade

¢ Innerhalb der Media Query Uberschreiben Sie nur die Eigenschaften, die sich andern sollen.
e Wenn ein Selektor gleich bleibt (z.B. #hero-section), gewinnt bei aktiver Media Query die
Regel, die spater kommt (also im @media-Block).

Responsive Testing mit DevTools

https://wiki.bzz.ch/ Printed on 2026/02/03 12:08



2026/02/03 12:08 9/9 LUO2: Fonts, CSS-Variablen, Cascade & Media Queries

& Alarado

Actions for
Accessibility in
Design

The fastest way to build and deploy websites
with reusable components.

GET STARTED Get live demo

« Offnen Sie DevTools (Chrome/Edge: F12)
e Aktivieren Sie den Device Toolbar (Handy/Tablet Symbol)
e Testen Sie:
1. Breitenwechsel Uber/unter 1024px
2. verschiedene Presets (z.B. iPhone, iPad)
3. Landscape/Portrait
e Prufen Sie auch:
1. ob Elemente verschwinden/Uberlappen
2. ob Text zu klein/gross wirkt
3. ob es horizontales Scrollen gibt (meist ein Zeichen flr zu grosse Breiten)

1)

Historisch stammt ,,em* aus der Typografie (em-square / ,M“-Breite). In CSS ist die Definition jedoch

eindeutig: 1em entspricht der aktuell berechneten “font-size -Grdsse - nicht der Buchstabenbreite.
2)

In diesem Modul: 'important nur, wenn Sie genau wissen, warum - sonst vermeiden.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: :
https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988732 &

Last update: 2026/02/02 00:32

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/_media/de/modul/m291/learningunits/lu02/theorie/screenshot_2026-02-02_at_00.23.31.png
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988732

	LU02: Fonts, CSS-Variablen, Cascade & Media Queries
	Lernziele
	Fonts im Web
	Google Fonts via CDN
	Besser in der Praxis: Fonts lokal speichern (kurz)
	Wichtige Font-Eigenschaften (Repetition)
	Einheiten bei Fonts: px vs em vs rem (mit Accessibility)
	Kurzdefinitionen
	Warum em/rem oft besser sind als px

	1) Skalierung & Nutzer-Einstellungen (Accessibility)
	2) Konsistenz über das ganze Projekt (Designsystem)
	3) Robustheit bei Komponenten
	px – wann ist es trotzdem okay?
	em vs rem – wann welches?
	line-height


	CSS-Variablen (Custom Properties)
	Was sind CSS-Variablen?
	Warum ist das nützlich?

	CSS Cascade (Kaskade) – verständlich & wichtig
	Warum ist das wichtig?
	1) Vererbung (Inheritance): Was „erbt“ ein Element?
	2) Überschreiben (Overriding): Wer gewinnt bei Konflikten?
	Regel 1: Wichtigkeit (''!important'')
	Regel 2: Spezifität (Specificity)
	Regel 3: Reihenfolge im CSS (Last Rule Wins)

	Media Queries und Kaskade: „CSS gilt nur wenn Bedingung stimmt“

	Media Queries & Responsive Design
	Was macht eine Media Query?
	Breakpoints: nach Inhalt, nicht nach Geräten
	Was passiert an einem Breakpoint?
	Beispiel aus unserem Projekt
	Media Queries und Kaskade

	Responsive Testing mit DevTools


