
2026/02/03 17:34 1/9 LU02: Fonts, CSS-Variablen, Cascade & Media Queries

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02: Fonts, CSS-Variablen, Cascade &
Media Queries

Ziel von LU02: Sie bringen Ihr Projekt „Landingpage Alarado“ optisch näher ans
Figma-Design, indem Sie

die Schrift (Google Font) einbinden,1.
Designwerte als CSS-Variablen definieren und2.
Mit Media Queries das Responsive-Layout für Mobile umsetzen.3.

Lernziele

Sie können eine Google Font per <link> einbinden und sinnvoll als font-family verwenden.
Sie verstehen den Unterschied zwischen px, em und rem und setzen Schriftgrössen konsistent
um.
Sie können CSS-Variablen in :root definieren und mit var(…) wiederverwenden.
Sie verstehen die CSS-Cascade (Reihenfolge/Überschreiben/Vererbung).
Sie können Media Queries für Responsive Design nutzen und mit DevTools testen.

Fonts im Web

Google Fonts via CDN

In vielen Projekten werden Fonts schnell über ein CDN eingebunden (z.B. Google Fonts) – das ist
praktisch für Prototypen und Schulprojekte.

Typischer Aufbau im <head>:

<link rel="preconnect" href="https://fonts.googleapis.com" />
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
<link
href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;500;600;700&
display=swap" rel="stylesheet" />

Dann im CSS verwenden:

body {
 font-family: "Poppins", sans-serif;
}

Hinweis zur Praxis: In professionellen Projekten werden Fonts häufig lokal im

http://december.com/html/4/element/link.html
http://december.com/html/4/element/link.html
http://december.com/html/4/element/link.html

Last
update:
2026/02/02
00:33

de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988788

https://wiki.bzz.ch/ Printed on 2026/02/03 17:34

Projekt gespeichert (Datenschutz/Performance/Offline-Fähigkeit). Für dieses
Modul genügt zu Beginn das Einbinden via <link>.

Besser in der Praxis: Fonts lokal speichern (kurz)

Mit @font-face können Sie eine Schrift von Ihrer eigenen Projekt-URL laden und einen Namen
vergeben.

@font-face {
 font-family: "Poppins";
 src: url("./fonts/Poppins-Regular.woff2") format("woff2");
 font-weight: 400;
 font-style: normal;
}

Wichtige Font-Eigenschaften (Repetition)

font-family: Schrift-Familie (immer mit Fallbacks arbeiten, z.B. sans-serif)
font-weight: Schriftschnitt – „Dicke“ (z.B. 400 normal, 700 bold – nicht jede Schrift hat alle
Stufen)
font-style: normal/italic
text-transform: Darstellung (uppercase/lowercase/capitalize)
line-height: Zeilenhöhe (Best Practice: ohne Einheit, z.B. 1.4)

Einheiten bei Fonts: px vs em vs rem (mit Accessibility)

Kurzdefinitionen

px: „fixe“ Design-Einheit. 16px bleibt rechnerisch 16px.
em: relativ zur berechneten Schriftgrösse (font-size) des aktuellen Elements.1)

rem: relativ zur Root-Schriftgrösse (font-size von html).

Warum em/rem oft besser sind als px

1) Skalierung & Nutzer-Einstellungen (Accessibility)

Viele Nutzerinnen und Nutzer verändern bewusst die Standard-Schriftgrösse im Browser oder
verwenden Zoom bzw. Betriebssystem-Einstellungen (z.B. Sehhilfe, grosse Schrift).

Mit rem/em „gehen“ Ihre Schriftgrössen automatisch mit dieser Einstellung mit, weil sie
relativ gerechnet werden.
Mit px bleiben Sie oft näher an einem „fixen“ Design – das kann dazu führen, dass Text im

2026/02/03 17:34 3/9 LU02: Fonts, CSS-Variablen, Cascade & Media Queries

BZZ - Modulwiki - https://wiki.bzz.ch/

Verhältnis zu Layout-Abständen schlechter skaliert.

2) Konsistenz über das ganze Projekt (Designsystem)

Mit rem können Sie ein klares System bauen:

Basis ist html { font-size: … }
Alles andere wird in rem definiert (z.B. h1 = 4rem, p = 1.125rem)

Damit können Sie das „Gesamtbild“ sehr kontrolliert skalieren, ohne jedes Element einzeln
anzufassen.

3) Robustheit bei Komponenten

em ist besonders nützlich innerhalb von Komponenten:

Buttons, Badges, Cards können Abstände (padding/margins) in em bekommen,
so bleiben sie proportional zur Textgrösse der Komponente.

Beispiel: Wenn ein Button-Text grösser wird, wächst das Padding automatisch mit – das wirkt
typografisch sauber und verhindert „gequetschte“ Buttons.

px – wann ist es trotzdem okay?

px ist nicht „verboten“, aber Sie sollten wissen, wofür:

sehr feine Linien (z.B. 1px border)
pixelgenaue Details, wenn es wirklich fix sein muss
einzelne Sonderfälle im Layout

Viele moderne Designsysteme nutzen rem für Typografie + Spacing und px nur für kleine, technische
Details.

em vs rem – wann welches?

rem: für globale Typografie (h1, p, nav, Standardtext) → konsistent im ganzen Projekt
em: für komponenten-interne Proportionen (Padding, Icon-Grösse, kleine Abstände) →
skaliert mit der Komponente

line-height

Für Lesbarkeit ist eine passende Zeilenhöhe zentral.

Best Practice: einheitenlos, z.B. line-height: 1.4;

Einheitenlose line-height skaliert automatisch mit der Schriftgrösse und ist darum sehr stabil –

Last
update:
2026/02/02
00:33

de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988788

https://wiki.bzz.ch/ Printed on 2026/02/03 17:34

besonders bei Responsive und bei Nutzer-Zoom.

CSS-Variablen (Custom Properties)

Was sind CSS-Variablen?

CSS-Variablen (korrekt: Custom Properties) sind benannte Werte, die Sie einmal zentral definieren
und dann überall mit var(…) verwenden. Das spart Copy/Paste und macht Anpassungen viel
einfacher.

Beispiel:

:root {
 --primary: #263fa9;
 --text: #223344;
}
body {
 color: var(--text);
}
button {
 background: var(--primary);
}

Warum ist das nützlich?

Wiederverwendbarkeit: Farben/Grössen müssen nicht überall kopiert werden.
Wartbarkeit: Eine Änderung in :root wirkt im ganzen Projekt.
Semantik: –main-text-color ist verständlicher als #223344.

Vergleich zu Print-Design (z.B. InDesign):
CSS-Variablen sind ähnlich wie Absatz-/Zeichenstile oder ein Designsystem:
Sie definieren Regeln einmal zentral und wenden sie überall an.

CSS Cascade (Kaskade) – verständlich & wichtig

Was ist die Kaskade?
Die CSS-Kaskade ist das Regelwerk, das entscheidet, welche CSS-Regel am
Ende wirklich angewendet wird, wenn mehrere Regeln dasselbe Element
betreffen.
Kurz: Wenn CSS „streitet“, sagt die Kaskade, wer gewinnt.

2026/02/03 17:34 5/9 LU02: Fonts, CSS-Variablen, Cascade & Media Queries

BZZ - Modulwiki - https://wiki.bzz.ch/

Warum ist das wichtig?

In echten Projekten schreiben Sie nicht nur 1 Regel pro Element:

Sie haben Basis-Styles (z.B. body)
Komponenten-Styles (z.B. .menu a)
Zustände (z.B. .active, :hover)
Responsive Regeln (Media Queries)
und manchmal überschreibt man später etwas gezielt

Ohne Kaskade wäre unklar, was am Ende gilt.

1) Vererbung (Inheritance): Was „erbt“ ein Element?

Einige CSS-Eigenschaften werden vom Eltern-Element an Kinder weitergegeben, wenn das Kind
selbst nichts anderes definiert.

Typisch vererbt (sehr häufig):

color
font-family, font-size, font-weight, font-style
line-height
text-transform

Typisch NICHT vererbt:

background-color / background-image
margin / padding
border
width / height
display

Beispiel:

body {
 font-family: "Poppins", sans-serif;
 color: #223344;
 line-height: 1.4;
}

Alle Textelemente im Body erhalten diese Werte, solange sie nicht selbst etwas anderes setzen.

2) Überschreiben (Overriding): Wer gewinnt bei Konflikten?

Wenn mehrere Regeln dieselbe Eigenschaft setzen (z.B. color), muss CSS entscheiden, welche gilt.
Das passiert in dieser Reihenfolge:

Last
update:
2026/02/02
00:33

de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988788

https://wiki.bzz.ch/ Printed on 2026/02/03 17:34

Regel 1: Wichtigkeit (''!important'')

!important gewinnt fast immer – wird aber nur in Ausnahmefällen empfohlen.

2)

Regel 2: Spezifität (Specificity)

Je „genauer“ ein Selektor ist, desto stärker ist er.

Grob von schwach nach stark:

Elementselektor: p , a , header (schwach)1.
Klassenselektor: .menu, .active (stärker)2.
ID-Selektor: #hero-section (sehr stark)3.

Beispiel:

a { color: black; } /* schwach */
.menu a { color: gray; } /* stärker */
a.active { color: blue; } /* ähnlich stark wie .menu a (Klasse + Element)
*/
#special a { color: red; } /* sehr stark */

Regel 3: Reihenfolge im CSS (Last Rule Wins)

Wenn zwei Regeln gleich spezifisch sind, gewinnt die Regel, die später im CSS steht.

Beispiel:

.menu a { color: gray; }

.menu a { color: green; } /* gewinnt, weil später */

Media Queries und Kaskade: „CSS gilt nur wenn Bedingung stimmt“

Media Queries sind keine „eigene Welt“ – sie folgen denselben Regeln wie oben. Sie sind wie
zusätzliche Regeln, die nur aktiv werden, wenn die Bedingung erfüllt ist.

Beispiel:

#hero-section { flex-direction: row; }

@media screen and (width < 1024px) {
 #hero-section { flex-direction: column-reverse; }
}

2026/02/03 17:34 7/9 LU02: Fonts, CSS-Variablen, Cascade & Media Queries

BZZ - Modulwiki - https://wiki.bzz.ch/

Was passiert?

Über 1024px gilt: row
Unter 1024px wird die zweite Regel aktiv und überschreibt flex-direction

Media Query überschreibt nur dann, wenn sie „an“ ist. Und auch dort gilt: Spezifität + Reihenfolge
entscheiden.

CSS debuggen
Wenn etwas „komisch“ aussieht, schauen Sie in DevTools: Welche Regel ist
durchgestrichen? Wer gewinnt? Genau das ist die Kaskade.

Media Queries & Responsive Design

Was macht eine Media Query?

Media Queries erlauben, dass sich das Layout an verschiedene Bildschirmgrössen anpasst, ohne den
Inhalt zu ändern – nur die Darstellung wird angepasst.

https://wiki.bzz.ch/_detail/de/modul/m291/learningunits/lu02/theorie/media-queries.webp?id=de%3Amodul%3Am291%3Alearningunits%3Alu02%3Atheorie%3Aa_css-intro

Last
update:
2026/02/02
00:33

de:modul:m291:learningunits:lu02:theorie:a_css-intro https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988788

https://wiki.bzz.ch/ Printed on 2026/02/03 17:34

Breakpoints: nach Inhalt, nicht nach Geräten

Ein Breakpoint ist eine Bildschirmbreite, bei der Sie Ihr CSS bewusst ändern, damit das Layout
wieder gut aussieht. Das passiert meistens über eine Media Query, z.B.:

@media (width < 1024px) { ... }

Was passiert an einem Breakpoint?

Bei einem Breakpoint passen Sie die Darstellung an, weil sonst z.B.:

Elemente überlappen oder sich gegenseitig verdrängen
Textzeilen extrem lang/kurz werden (schlecht lesbar)
Buttons/Navigation nicht mehr sinnvoll Platz haben
ein 2-Spalten-Layout zu eng wird und unruhig wirkt
horizontales Scrollen entsteht

Ein Breakpoint ist also der Moment, wo das Layout „kippt“
und eine andere Anordnung sinnvoller ist.

Beispiel aus unserem Projekt

Unser Desktop-Layout ist 2-spaltig (Text links, Bild rechts). Auf Mobile wird es 1-spaltig, mit dem Bild
zuerst:

@media screen and (width < 1024px) {
 #hero-section {
 flex-direction: column-reverse; /* Bild oben, Text unten */
 }
}

Media Queries und Kaskade

Innerhalb der Media Query überschreiben Sie nur die Eigenschaften, die sich ändern sollen.
Wenn ein Selektor gleich bleibt (z.B. #hero-section), gewinnt bei aktiver Media Query die
Regel, die später kommt (also im @media-Block).

Responsive Testing mit DevTools

2026/02/03 17:34 9/9 LU02: Fonts, CSS-Variablen, Cascade & Media Queries

BZZ - Modulwiki - https://wiki.bzz.ch/

Öffnen Sie DevTools (Chrome/Edge: F12)
Aktivieren Sie den Device Toolbar (Handy/Tablet Symbol)
Testen Sie:

Breitenwechsel über/unter 1024px1.
verschiedene Presets (z.B. iPhone, iPad)2.
Landscape/Portrait3.

Prüfen Sie auch:
ob Elemente verschwinden/überlappen1.
ob Text zu klein/gross wirkt2.
ob es horizontales Scrollen gibt (meist ein Zeichen für zu grosse Breiten)3.

1)

Historisch stammt „em“ aus der Typografie (em-square / „M“-Breite). In CSS ist die Definition jedoch
eindeutig: 1em entspricht der aktuell berechneten `font-size`-Grösse – nicht der Buchstabenbreite.
2)

In diesem Modul: !important nur, wenn Sie genau wissen, warum – sonst vermeiden.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988788

Last update: 2026/02/02 00:33

https://wiki.bzz.ch/_media/de/modul/m291/learningunits/lu02/theorie/screenshot_2026-02-02_at_00.23.31.png
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m291/learningunits/lu02/theorie/a_css-intro?rev=1769988788

	LU02: Fonts, CSS-Variablen, Cascade & Media Queries
	Lernziele
	Fonts im Web
	Google Fonts via CDN
	Besser in der Praxis: Fonts lokal speichern (kurz)
	Wichtige Font-Eigenschaften (Repetition)
	Einheiten bei Fonts: px vs em vs rem (mit Accessibility)
	Kurzdefinitionen
	Warum em/rem oft besser sind als px

	1) Skalierung & Nutzer-Einstellungen (Accessibility)
	2) Konsistenz über das ganze Projekt (Designsystem)
	3) Robustheit bei Komponenten
	px – wann ist es trotzdem okay?
	em vs rem – wann welches?
	line-height

	CSS-Variablen (Custom Properties)
	Was sind CSS-Variablen?
	Warum ist das nützlich?

	CSS Cascade (Kaskade) – verständlich & wichtig
	Warum ist das wichtig?
	1) Vererbung (Inheritance): Was „erbt“ ein Element?
	2) Überschreiben (Overriding): Wer gewinnt bei Konflikten?
	Regel 1: Wichtigkeit (''!important'')
	Regel 2: Spezifität (Specificity)
	Regel 3: Reihenfolge im CSS (Last Rule Wins)

	Media Queries und Kaskade: „CSS gilt nur wenn Bedingung stimmt“

	Media Queries & Responsive Design
	Was macht eine Media Query?
	Breakpoints: nach Inhalt, nicht nach Geräten
	Was passiert an einem Breakpoint?
	Beispiel aus unserem Projekt
	Media Queries und Kaskade

	Responsive Testing mit DevTools

