
2026/02/03 10:40 1/11 LU05c - Iteration

BZZ - Modulwiki - https://wiki.bzz.ch/

LU05c - Iteration

Eine Iteration führt einen Programmteil nie, einmal oder
mehrmals aus. Solange die Bedingung erfüllt ist, wird der
Programmteil innerhalb der Iteration ausgeführt.

Einführung

Die Verwendung von Schleifen erleichtert dir die Umsetzung von sich wiederholenden
Programmteilen. Anstatt den (fast) gleichen Code immer wieder zu schreiben, solltest du eine
Iteration einsetzen. Schauen wir uns ein Beispiel an, welches die Summe von 5 Zahlen bildet.

summ = 0

print('Input a number: ')
summ = summ + int(input())

print('Input a number: ')
summ = summ + int(input())

print('Input a number: ')
summ = summ + int(input())

print('Input a number: ')
summ = summ + int(input())

print('Input a number: ')
summ = summ + int(input())

print('The sum of the numbers is ' +
str(summ))

Das Programm erledigt die Aufgabe, aber nicht auf elegante Weise. Was wäre, wenn das Programm
hundert oder vielleicht tausend Zahlen lesen und deren Summe ausgeben müsste? Was wäre, wenn
das Programm nur drei Zahlen lesen müsste?

Das Problem lässt sich mit einer Schleife lösen, die sowohl die Summe als auch die Anzahl der
gelesenen Eingaben festhält. Das Programm, das die Summe von fünf Zahlen ausgibt, sieht nun wie
folgt aus:

numbers_read = 0

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:iteration https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/iteration

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

summ = 0

while (numbers_read < 5):
 summ = summ + int(input('Input number'))
 numbers_read = numbers_read + 1

print('The sum of the numbers is ' +
str(summ))

Schleifen und Endlosschleifen

Eine Schleife besteht aus einer Bedingung, die festlegt, ob der Code innerhalb der Schleife wiederholt
werden soll oder nicht, sowie aus einem Block, der den zu wiederholenden Quellcode enthält. Eine
Schleife hat die folgende Form.

while (_statement_):
 # The content of the block
 # The block can have an unlimited amount
of content

Wir verwenden zunächst den Wert True als Anweisung der Schleife. Auf diese Weise wird die
Ausführung der Schleife endlos wiederholt. Dies ist der Fall, wenn die Programmausführung zum
ersten Mal bei der Schleifenanweisung ankommt, und auch, wenn sie das Ende des Schleifenblocks
erreicht.

Die Ausführung der Schleife erfolgt zeilenweise. Die folgenden Programmausgaben kann ich
unendlich oft programmieren.

while True:
 print('I can program!')

I can program!
I can program!
I can program!
I can program!
I can program!
...

Ein Programm, das unendlich lange läuft, beendet sich nicht
von selbst. In Python kann es normalerweise mit dem Befehl

2026/02/03 10:40 3/11 LU05c - Iteration

BZZ - Modulwiki - https://wiki.bzz.ch/

Strg-C beendet werden.

While-Schleife mit einer Bedingung

Oben haben wir eine Schleife mit dem booleschen Wert True in der Bedingung verwendet, was
bedeutet, dass die Schleife für immer weiterläuft (oder bis die Schleife mit dem Befehl break
beendet wird).

Die Bedingung einer Schleife muss einen Ausdruck enthalten, genau wie die Bedingung einer if-
Anweisung. Der Wert True kann durch einen Ausdruck ersetzt werden, der bei der Ausführung des
Programms ausgewertet wird. Der Ausdruck wird auf die gleiche Weise definiert wie die Bedingung
einer Selektion.

Der folgende Code gibt die Zahlen 1,2,…,5 aus. Wenn der Wert der Variablen number gröser als 5 ist,
wird die while-Bedingung als false ausgewertet und die Ausführung der Schleife endgültig
beendet.

number = 1

while (number < 6):
 print(number)
 number+= 1
print('Ready!')

1
2
3
4
5
Ready!

Der obige Code kann wie folgt gelesen werden: „Solange der Wert der variablen Zahl kleiner als 6 ist,
drucke den Wert der variablen Zahl und erhöhe den Wert der variablen Zahl um eins“.

Oben wird der Wert der Variablen number bei jeder Ausführung des Schleifenkörpers um eins erhöht.

Beenden einer Schleife

Die Schleifenanweisung kann mit dem Befehl break abgebrochen werden. Wenn ein Computer den
Befehl break ausführt, geht die Programmausführung zum nächsten Befehl über, der auf den
Schleifenblock folgt.

Das folgende Beispiel ist ein Programm, das Zahlen von eins bis fünf ausgibt. Beachte die Variable

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:iteration https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/iteration

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

number, welche vor der Schleife definiert wird. Auf diese Weise kann die Variable innerhalb der
Schleife inkrementiert werden und die Änderung bleibt zwischen mehreren Iterationen der Schleife
erhalten.

number = 1

while True:
 print(number)
 if (number >= 5):
 break

 number = number + 1

print('Ready!')

1
2
3
4
5
Ready!

Der Ausstieg aus der Schleife erfolgt, wenn der Benutzer eine bestimmte Eingabe vornimmt oder
wenn eine in der Schleife durchgeführte Berechnung zum gewünschten Ergebnis führt. Diese Art von
Programmen enthält sowohl eine Schleife, die zur Definition eines zu wiederholenden Abschnitts
dient, als auch eine bedingte Anweisung, mit der geprüft wird, ob die Bedingung zum Verlassen der
Schleife erfüllt ist oder nicht.

Innerhalb einer Schleife können auch Benutzereingaben abgefragt werden. Die Variablen, die
üblicherweise in Schleifen verwendet werden, werden vor der Schleife definiert, während Variablen
(wie der vom Benutzer gelesene Wert), die für die Schleife spezifisch sind, innerhalb der Schleife
definiert werden.

Im folgenden Beispiel fragt das Programm den Benutzer, ob er die Schleife verlassen will oder nicht.
Wenn der Benutzer die Zeichenkette „y“ eingibt, geht die Ausführung des Programms zu dem auf den
Schleifenblock folgenden Befehl über, woraufhin die Ausführung des Programms endet.

while True:
 print('Exit? (y exits)')
 message = input()
 if (message == 'y'):
 break

 print('Ok! Let's carry on!')

print('Ready!')

2026/02/03 10:40 5/11 LU05c - Iteration

BZZ - Modulwiki - https://wiki.bzz.ch/

Exit? (y exits)
User: <no>
Ok! Let's carry on!
Exit? (y exits)
User: <non>
Ok! Let's carry on!
Exit? (y exits)
User: <y>
Ready!

Im vorherigen Beispiel hat das Programm Eingaben vom Typ String vom Benutzer gelesen. Das
Programm kann auch mit anderen Typen von Variablen implementiert werden. Das folgende
Programm fragt Zahlen vom Benutzer ab, bis dieser eine 0 eingibt.

while True:
 number = int(input('Input a number, 0 to
quit'))
 if (number == 0):
 break

 print('You input ' + str(number))

print('Done, thank you!')

Input a number, 0 to quit
User: <5>
You input 5
Input a number, 0 to quit
User: <-2>
You input -2
Input a number, 0 to quit
User: <y>
Done, thank you!

Rückkehr zum Anfang der Schleife

Wenn die Ausführung das Ende der Schleife erreicht, beginnt die Ausführung wieder am Anfang der
Schleife. Dies bedeutet, dass alle Befehle in der Schleife ausgeführt wurden. Sie können auch von
anderen Stellen als dem Ende mit dem Befehl continue zum Anfang zurückkehren. Wenn der
Computer den Befehl continue ausführt, springt die Ausführung des Programms an den Anfang der
Schleife.

Das folgende Beispiel demonstriert die Verwendung des continue-Befehls. Das Programm fordert
den Benutzer auf, positive Zahlen einzugeben. Wenn der Benutzer eine negative Zahl oder eine Null
eingibt, gibt das Programm die Meldung „Ungültige Zahl! Versuchen Sie es erneut“, woraufhin die

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:iteration https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/iteration

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

Ausführung zum Anfang der Schleife zurückkehrt. Im vorherigen Beispiel hat das Programm Eingaben
vom Typ String vom Benutzer gelesen. Ähnliche Programme mit anderen Eingabetypen sind ebenfalls
möglich. Im folgenden Beispiel wird der Benutzer nach Zahlen gefragt, bis er eine 0 eingibt.

while True:
 number = int(input('Insert positive
integers'))

 if (number <= 0):
 print('Invalid number! Try again.')
 continue

 print('Your input was ' + str(number))

Das Programm im obigen Beispiel wird unendlich oft wiederholt, da der break-Befehl zum Verlassen
der Schleife nicht verwendet wird. Um die Schleife zu verlassen, muss der break-Befehl hinzugefügt
werden.

Im folgenden Beispiel wird das Programm so geändert, dass der Benutzer aufgefordert wird, positive
Zahlen einzugeben. Wenn der Benutzer eine negative Zahl eingibt, teilt ihm das Programm mit, dass
die Zahl ungültig war und kehrt zum Anfang der Schleife zurück. Wenn die Zahl 0 war, verlässt das
Programm die Schleife.

while True:
 number = int(input('Insert positive
integers'))

 if (number == 0):
 break

 if (number <= 0):
 print('Invalid number! Try again.')
 continue

 print('Your input was ' + str(number))

Rechnen mit Schleifen

Schleifen werden bei der Berechnung vieler verschiedener Dinge verwendet. Zum Beispiel verwenden
Programme, die eine unbestimmte Anzahl von vom Benutzer eingegebenen Werten verarbeiten,
Schleifen. Diese Art von Programmen gibt in der Regel nach dem Ende der Schleife eine Art Statistik
über die gelesenen Zahlen oder andere Eingaben aus.

Damit das Programm Informationen aus der Schleifenausführung nach der Schleife ausdrucken kann,

2026/02/03 10:40 7/11 LU05c - Iteration

BZZ - Modulwiki - https://wiki.bzz.ch/

müssen die Informationen während der Schleife gespeichert und geändert werden.

Wenn die Variable, die zum Speichern der Daten verwendet wird, innerhalb der Schleife eingeführt
wird, ist die Variable nur innerhalb dieser Schleife verfügbar und nirgendwo sonst.

Wir wollen ein Programm erstellen, das die Anzahl der vom Benutzer eingegebenen Einsen zählt und
ausgibt. Erstellen wir zunächst eine nicht funktionierende Version und untersuchen wir die Wirkung
der Blöcke.

The task is to read an input from the user
while True:

 # The task is to keep count of number
ones
 ones = 0

 # The task is to ask the user for an
input and read a number from the user
 number = int(input('Input a number (0
exits)'))

 # The task is to exit the loop if the
user
 # has inputted zero
 if (number == 0):
 break

 # The task is to increase the amount of
ones
 # if the user inputs a number one
 if (number == 1):
 ones = ones + 1 #can also achieve the
same thing by ones += 1

The task is to print out the total of ones
This doesn't work because the variable ones
has been
introduced within the loop
print('The total of ones: ' + str(ones))

Das vorherige Programm funktioniert nicht, weil die Variable ones innerhalb der Schleife eingeführt
wird und versucht wird, sie nach der Schleife am Ende des Programms zu verwenden. Die Variable
existiert nur innerhalb der Schleife. Wenn die Druckanweisung print('The total of ones: ' +
ones) innerhalb der Schleife wäre, würde das Programm funktionieren, aber nicht in der
gewünschten Weise. Schauen wir uns das als nächstes an.

The task is to read an input from the user

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:iteration https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/iteration

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

while True:

 # The task is to keep count of number
ones
 ones = 0

 # The task is to ask the user for an
input and read a number from the user
 number = int(input('Input a number (0
exits)'))

 # The task is to exit the loop if the
user
 # has inputted zero
 if (number == 0):
 break

 # The task is to increase the amount of
ones
 # if the user inputs a number one
 if (number == 1):
 ones = ones + 1

 # The task is to print out the total of
ones
 print('The total of ones: ' + str(ones))

Das Beispiel funktioniert zwar, aber nicht wie gehofft. Wenn
wir einige Eingaben ausprobieren, erhalten wir dies:

Insert a number (0 exits)
User: <5>
The total of ones: 0
Insert a number (0 exits)
User: <1>
The total of ones: 1
Insert a number (0 exits)
User: <1>
The total of ones: 1
Insert a number (0 exits)
User: <2>
The total of ones: 0
Insert a number (0 exits)
User: <0>

Der Grund dafür liegt in der Variable ones, welche wir innerhalb der Schleife definiert haben. Dadurch
wird die Variable bei jedem Durchlauf der Schleife neu erstellt. Wenn eine Variable ihren Wert über
mehrere Durchläufe behalten soll, musst du sie vor der Iteration definieren.

In dem folgenden Beispiel berechnet das Programm die Gesamtzahl der eingegebenen Einsen. Die

2026/02/03 10:40 9/11 LU05c - Iteration

BZZ - Modulwiki - https://wiki.bzz.ch/

Eingaben werden gelesen, bis der Benutzer eine 0 eingibt, woraufhin das Programm die Gesamtzahl
der eingegebenen Einsen ausgibt. Das Programm verwendet die Variable ones, um die Anzahl der
Einsen zu erfassen.

The task is to keep track of number ones
ones = 0

The task is to read an input from the user
while True:
 # The task is to ask the user for an
input and read a number from the user
 number = int(input('Input a number (0
exits)'))

 # The task is to exit the loop if the
user
 # has inputted zero
 if (number == 0):
 break

 # The task is to increase the amount of
ones
 # if the user inputs a number one
 if (number == 1):
 ones = ones + 1

The task is to print out the total of ones
print('The total of ones: ' + str(ones))

Insert a number (0 exits)
User: <1>
Insert a number (0 exits)
User: <2>
Insert a number (0 exits)
User: <1>
Insert a number (0 exits)
User: <-1>
Insert a number (0 exits)
User: <0>
Total of ones: 2

Manchmal müssen Sie mehrere Variablen verwenden. Das folgende Beispiel zeigt ein Programm, das
Zahlen vom Benutzer liest, bis der Benutzer 0 schreibt. Dann gibt das Programm die Anzahl der
positiven und negativen Zahlen sowie den Prozentsatz der positiven Zahlen von allen gegebenen
Zahlen aus.

For saving number of numbers

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:iteration https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/iteration

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

number_of_positives = 0
number_of_negatives = 0

For repeatedly asking for numbers
while True:
 # The task is to ask the user for an
input and read a number from the user
 number_from_user = int(input('Input a
number (0 exits)'))

 # For breaking the loop when user writes
0
 if (number_from_user == 0):
 break

 # For increasing number_of_positives by
one
 # when user gives a positive number
 if (number_from_user > 0):
 number_of_positives =
number_of_positives + 1

 # For increasing number_of_negatives by
one
 # when user gives a negative number
 if (number_from_user < 0):
 number_of_negatives =
number_of_negatives + 1

 # Also could have used:
 # if (number_from_user > 0):
 # number_of_positives =
number_of_positives + 1
 # else:
 # number_of_negatives =
number_of_negatives + 1
 #

For printing the number of positive numbers
print('Positive numbers: ' +
str(number_of_positives))
For printing the number of negative numbers
print('Negative numbers: ' +
str(numberOfNegative))

For printing the percentage of positive
numbers from all numbers
if (number_of_positives + number_of_negatives
> 0):
 # Print only if user has given numbers
 # to avoid dividing by zero

2026/02/03 10:40 11/11 LU05c - Iteration

BZZ - Modulwiki - https://wiki.bzz.ch/

 percentageOfPositives = 100.0 *
number_of_positives / (number_of_positives +
number_of_negatives)
 print('Percentage of positive numbers: '
+ str(percentageOfPositives) + '%')

M319-LU05, M319-E1G, M319-E1F

 Kevin Maurizi, Marcel Suter

Diese Theorieseite ist eine übersetzte und Theorieseite Aufgabe von Scott Morgan, verwendet unter
CC BY NC SA.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/iteration

Last update: 2025/06/23 07:45

https://wiki.bzz.ch/tag/m319-lu05?do=showtag&tag=M319-LU05
https://wiki.bzz.ch/tag/m319-e1g?do=showtag&tag=M319-E1G
https://wiki.bzz.ch/tag/m319-e1f?do=showtag&tag=M319-E1F
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://scott3142.uk/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/iteration

	LU05c - Iteration
	Einführung
	Schleifen und Endlosschleifen
	While-Schleife mit einer Bedingung
	Beenden einer Schleife
	Rückkehr zum Anfang der Schleife
	Rechnen mit Schleifen

