
2025/11/19 13:26 1/9 LU05b - Selektion

BZZ - Modulwiki - https://wiki.bzz.ch/

LU05b - Selektion

Mit einer Selektion definierst du, dass ein Programmteil
abhängig von einer Bedingung ausgeführt wird oder nicht.

Einführung

Unsere Programme sind bisher linear verlaufen. Mit anderen Worten, die Programme wurden von
oben nach unten ohne grössere Überraschungen oder bedingtes Verhalten ausgeführt. In der Regel
möchten wir jedoch bedingte Logik in unsere Programme einbauen. Damit meinen wir Funktionen, die
auf die eine oder andere Weise vom Zustand der Programmvariablen abhängig sind.

Um beispielsweise die Ausführung eines Programms auf der Grundlage von Benutzereingaben zu
verzweigen, müssen wir eine so genannte Selektion verwenden. Die einfachste Selektion sieht etwa
so aus.

print('Hello, world!')
if True:
 print('This code is unavoidable!')

Hello, world!
This code is unavoidable!

Eine Selektion beginnt mit dem Schlüsselwort if, gefolgt von einer Bedingung, die ausgewertet wird,
wenn die Selektion erreicht wird. Das Ergebnis der Auswertung ist ein boolescher Wert, also entweder
True oder False. Im Beispiel oben wurde keine Auswertung vorgenommen. Stattdessen wurde in der
bedingten Anweisung explizit ein boolescher Wert (True) verwendet.

Auf die Bedingung folgt ein Block, der darunter eingerückt ist. Der Quellcode innerhalb des
eingerückten Blocks wird ausgeführt, wenn die Bedingung den Wert True ergibt.

Schauen wir uns ein Beispiel an, bei dem wir in der bedingten Anweisung Zahlen vergleichen.

number = 11
if (number > 10):
 print('The number was greater than 10')

The number was greater than 10

Wenn der Ausdruck in der Selektion wahr ist, wird die Ausführung des Programms zu dem durch die

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:selektion https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/selektion

https://wiki.bzz.ch/ Printed on 2025/11/19 13:26

Selektion definierten Block fortgesetzt. Im obigen Beispiel lautet die Bedingung „wenn die Zahl in der
Variablen größer als 10 ist“. Ist der Ausdruck hingegen falsch, wird die Anweisung nach dem
eingerückten Codeblock ausgeführt.

Code-Einrückung und Blockanweisungen

Ein Codeblock ist ein Abschnitt mit einer bestimmten Einrückungsebene von links.

Die meisten unserer Programme enthalten einen wiederkehrenden Ausschnitt def main():, der einen
Block einleitet, wobei der Code innerhalb der Funktion darunter eingerückt ist.

Blöcke definieren die Struktur eines Programms und seine Grenzen. Eine Selektion markiert ebenfalls
den Beginn eines neuen Codeblocks.

Look at the indentation below, which marks
the blocks
def main(): #start block 1
 number = 10 #inside block 1
 if (number > 5): #start block 2
 print('This is greater than 5!')
#inside block 2

if __name__ == '__main__':
 main() #outside block 1 and 2 but inside
the if block

Neben der Festlegung der Programmstruktur und -funktionalität haben Blockanweisungen auch
Auswirkungen auf die Lesbarkeit eines Programms. Code, der sich innerhalb eines Blocks befindet,
wird eingerückt. So wird beispielsweise jeglicher Quellcode innerhalb des Blocks einer Selektion tiefer
eingerückt als der if-Befehl, der die Selektion eingeleitet hat. Wenn der Block endet, endet auch die
Einrückung.

Python hat explizite Richtlinien, wie Code eingerückt werden sollte, die in den PEP 8 Richtlinien
nachgelesen werden können. Sie lauten im Wesentlichen:

Verwenden Sie 4 Leerzeichen pro Einrückungsebene.
Verwenden Sie Leerzeichen anstelle von Tabulatoren. (PyCharm übersetzt ihren Tabulator
automatisch in 4 Leerzeichen)

Das folgende Beispiel ist falsch eingerückt und führt zu einem Fehler.

if (number > 10):
number = 9

https://peps.python.org/pep-0008/

2025/11/19 13:26 3/9 LU05b - Selektion

BZZ - Modulwiki - https://wiki.bzz.ch/

Das folgende Beispiel ist korrekt eingerückt.

if (number > 10):
 number = 9

Unser Programmcode muss auch in den Übungen immer richtig eingerückt sein. Wenn die Einrückung
nicht korrekt ist, wird die Entwicklungsumgebung die Lösung nicht akzeptieren und nicht ausführen.

Else und Else-If

else

Wenn der Ausdruck innerhalb der Klammern der bedingten Anweisung den Wert false ergibt, wird
die Ausführung des Codes auf die Anweisung nach dem Einrückungsblock verschoben. Dies ist nicht
immer erwünscht, und in der Regel wollen wir eine alternative Option für den Fall schaffen, dass der
bedingte Ausdruck als falsch ausgewertet wird.

Dies kann mit Hilfe des else-Befehls geschehen, der zusammen mit dem if-Befehl verwendet wird.

number = 4

if (number > 5):
 print('Your number is greater than
five!')
else:
 print('Your number is five or less!')

Your number is five or less!

Wenn für eine Selektion ein else-Zweig angegeben wurde, wird der durch den else-Zweig definierte
Block für den Fall ausgeführt, dass die Bedingung der Selektion falsch ist. Der else-Befehl steht in
der gleichen Zeile wie der durch den if-Befehl definierte Block.

elif

Bei mehreren Bedingungen verwenden wir den elif-Befehl. Der Befehl elif, kurz für else if, ist wie
else, aber mit einer zusätzlichen Bedingung. elif folgt der if-Bedingung, und sie kann mehrmals
vorkommen.

number = 3

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:selektion https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/selektion

https://wiki.bzz.ch/ Printed on 2025/11/19 13:26

if (number == 1):
 print('The number is one')
elif (number == 2):
 print('The given number is two')
elif (number == 3):
 print('The number must be three!')
else:
 print('Something else!')

The number must be three!

Lesen wir das obige Beispiel vor: 'Wenn die Zahl eins ist, dann drucke „The number is one“, wenn die
Zahl zwei ist, dann drucke „The given number is two“, wenn die Zahl drei ist, dann drucke „The
number must be three!“. Andernfalls drucke „Something else!“'

Selektionen mit einer booleschen Variable

Der Wert, der zwischen den Klammern der bedingten Anweisung steht, sollte nach der Auswertung
vom Typ Boolean sein. Variablen vom Typ Boolean sind entweder True oder False.

is_it_true = True
if (is_it_true):
 print('Pretty wild!')

Pretty wild!

Vergleichsoperatoren können auch ausserhalb von Bedingungen verwendet werden. In diesen Fällen
wird der boolesche Wert, der sich aus dem Vergleich ergibt, zur späteren Verwendung in einer
booleschen Variablen gespeichert.

first = 1
second = 3
is_greater = first > second

Im obigen Beispiel enthält die boolesche Variable is_greater jetzt den booleschen Wert False. Wir
können das vorherige Beispiel erweitern, indem wir eine Selektion hinzufügen.

first = 1
second = 3

2025/11/19 13:26 5/9 LU05b - Selektion

BZZ - Modulwiki - https://wiki.bzz.ch/

is_less_than = first < second

if (is_less_than):
 print('1 is less than 3!')

Der obige Code wurde bis zu dem Punkt ausgeführt, an dem
die Variablen des Programms erstellt und mit Werten belegt
wurden. Die Variable is_less_than hat den Wert True.
Der nächste Schritt in der Ausführung ist der Vergleich if
(is_less_than) - der Wert für die Variable
is_less_than wird in ihrem Container gefunden, und das
Programm gibt schließlich aus:

1 is less than 3!

Der Modulo-Operator ist ein etwas weniger gebräuchlicher
Operator, der aber sehr praktisch ist, wenn man z. B. die
Teilbarkeit einer Zahl überprüfen will. Das Symbol für den
Modulo-Operator ist %.

remainder = 7 % 2
print(remainder) # prints 1
print(5 % 3) # prints 2
print(7 % 4) # prints 3
print(8 % 4) # prints 0
print(1 % 2) # prints 1

Wenn wir wissen wollen, ob die vom Benutzer angegebene Zahl durch vierhundert teilbar ist, prüfen
wir, ob der Rest Null ist, nachdem wir den Modulo der Zahl und vierhundert gebildet haben.

number = int(input())
remainder = number % 400

if (remainder == 0):
 print('The number ' + str(number) + ' is
divisible by four hundred.')
else:
 print('The number ' + str(number) + ' is
not divisible by four hundred.')

Da das Modulo eine Operation wie andere Berechnungen ist, kann es Teil eines Ausdrucks in einer
Selektion sein.

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:selektion https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/selektion

https://wiki.bzz.ch/ Printed on 2025/11/19 13:26

number = int(input())

if (number % 400 == 0):
 print('The number ' + str(number) + ' is
divisible by four hundred.')
else:
 print('The number ' + str(number) + ' is
not divisible by four hundred.')

Vergleichsoperatoren

Sie kennen die Vergleichsoperatoren bereits aus der LU04c - Selektion

Operator Die Bedingung ist erfüllt, wenn …
== … die beiden Werte gleich sind.
!= … die beiden Werte nicht gleich sind.
> … der erste Wert grösser als der zweite Wert ist.
>= … der erste Wert grösser oder gleich wie der zweite Wert ist.
< … der erste Wert kleiner als der zweite Wert ist.
<= … der erste Wert kleiner oder gleich wie der zweite Wert ist.

Ausführungsreihenfolge von Selektionen

Die Vergleiche werden von oben nach unten ausgeführt. Wenn die Ausführung ein if erreicht, deren
Bedingung wahr ist, wird ihr Block ausgeführt und der Vergleich beendet.

number = 5

if (number == 0):
 print('The number is zero.')
elif (number > 0):
 print('The number is greater than zero.')
elif (number > 2):
 print('The number is greater than two.')
else:
 print('The number is less than zero.')

The number is greater than zero.

Im obigen Beispiel wird die Zeichenfolge „The number is

https://wiki.bzz.ch/modul/m319python/learningunits/lu04/lu04c-selektion

2025/11/19 13:26 7/9 LU05b - Selektion

BZZ - Modulwiki - https://wiki.bzz.ch/

greater than zero.“ ausgegeben, auch wenn die Bedingung
Zahl > 2 wahr ist. Der Vergleich stoppt bei der ersten
Bedingung, die als wahr ausgewertet wird.

Probleme mit der Ausführungsreihenfolge umgehen

Machen wir uns mit der Ausführungsreihenfolge von Selektionen anhand einer klassischen
Programmierübung vertraut.

Schreiben Sie ein Programm, das den Benutzer auffordert, eine Zahl zwischen eins und hundert
einzugeben, und das diese Zahl ausgibt. Wenn die Zahl durch drei teilbar ist, gibst du statt der Zahl
„Fizz“ aus. Wenn die Zahl durch fünf teilbar ist, dann drucke „Buzz“ anstelle der Zahl. Wenn die Zahl
sowohl durch drei als auch durch fünf teilbar ist, dann drucke „FizzBuzz“ anstelle der Zahl.'

Der Programmierer beginnt mit dem Lösen der Aufgabe, indem er die Aufgabenbeschreibung liest und
den Code entsprechend der Beschreibung schreibt. Die Bedingungen für die Ausführung werden in
der Beschreibung in einer bestimmten Reihenfolge angegeben, und die anfängliche Struktur für das
Programm wird auf der Grundlage dieser Reihenfolge gebildet. Die Struktur wird anhand der
folgenden Schritte gebildet:

Schreiben Sie ein Programm, das den Benutzer zur Eingabe einer Zahl auffordert und diese Zahl
ausgibt.
Wenn die Zahl durch drei teilbar ist, wird anstelle der Zahl „Fizz“ gedruckt.
Wenn die Zahl durch fünf teilbar ist, dann drucke „Buzz“ anstelle der Zahl.
Wenn die Zahl sowohl durch drei als auch durch fünf teilbar ist, wird anstelle der Zahl
„FizzBuzz“ gedruckt.

Wenn-Bedingungen lassen sich leicht mit if-, elif-, else- Anweisungen umsetzen. Der
nachstehende Code wurde auf der Grundlage der obigen Schritte geschrieben, funktioniert aber nicht
richtig, wie man am Beispiel sehen kann.

number = int(input())

if (number % 3 == 0):
 print('Fizz')
elif (number % 5 == 0):
 print('Buzz')
elif (number % 15 == 0):
 print('FizzBuzz')
else:
 print(number)

User: <3>
Fizz

User: <4>
4

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lu05:selektion https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/selektion

https://wiki.bzz.ch/ Printed on 2025/11/19 13:26

User: <5>
Buzz

User: <15>
Fizz

Das Problem mit dem bisherigen Ansatz ist, dass das Parsen von bedingten Anweisungen bei
der ersten Bedingung, die wahr ist, aufhört. So wird z. B. bei dem Wert 15 die Zeichenfolge
„Fizz“ ausgegeben, da die Zahl durch drei teilbar ist (15 % 3 == 0).

Ein Ansatz für die Entwicklung dieses Gedankengangs wäre, zunächst die anspruchsvollste
Bedingung zu finden und zu implementieren. Danach würden wir die anderen Bedingungen
implementieren. Der Gedankengang wäre nun folgender:

Schreiben Sie ein Programm, das die Eingaben des Benutzers liest.1.
Wenn die Zahl sowohl durch fünfzehn teilbar ist, dann gib „FizzBuzz“ anstelle der Zahl aus.2.
Wenn die Zahl durch drei teilbar ist, dann drucke „Fizz“ anstelle der Zahl.3.
Wenn die Zahl durch fünf teilbar ist, wird anstelle der Zahl „Buzz“ gedruckt.4.
Ansonsten gibt das Programm die vom Benutzer angegebene Zahl aus.5.

Jetzt scheint das Problem gelöst zu sein:

number = int(input())

if (number % 15 == 0):
 print('FizzBuzz')
elif (number % 3 == 0):
 print('Fizz')
elif (number % 5 == 0):
 print('Buzz')
else:
 print(number)

User: <3>
Fizz

User: <4>
4

User: <5>
Buzz

User: <15>
FizzBuzz

2025/11/19 13:26 9/9 LU05b - Selektion

BZZ - Modulwiki - https://wiki.bzz.ch/

M319-LU05, M319-E1G, M391-E1F

 © Kevin Maurizi

Diese Theorieseite ist eine übersetzte und Theorieseite Aufgabe von Scott Morgan, verwendet unter
CC BY NC SA.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/selektion

Last update: 2025/06/23 07:45

https://wiki.bzz.ch/tag/m319-lu05?do=showtag&tag=M319-LU05
https://wiki.bzz.ch/tag/m319-e1g?do=showtag&tag=M319-E1G
https://wiki.bzz.ch/tag/m391-e1f?do=showtag&tag=M391-E1F
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://scott3142.uk/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m319/learningunits/lu05/selektion

	LU05b - Selektion
	Einführung
	Code-Einrückung und Blockanweisungen
	Else und Else-If
	else
	elif

	Selektionen mit einer booleschen Variable
	Vergleichsoperatoren
	Ausführungsreihenfolge von Selektionen
	Probleme mit der Ausführungsreihenfolge umgehen

