LU09.A01 - Einfache Funktionen definieren

Lösen Sie die zwei Aufträge um sich mit dem Syntax von Funktionen bekannt zu machen.

Auftrag 1: Vier verschiedene Varianten | File main.py

Lösen Sie die Aufgabe im File main.py und testen Sie den Code mit den Testfällen in main test.py

Funktionsblöcke können Sie auf vier verschiedenen Varianten definieren.

	Parameter	Return
Funktion 1	Nein	Nein
Funktion 2	Nein	Ja
Funktion 3	Ja	Nein
Funktion 3	Ja	Ja

Ergänzen Sie den Code um die Funktion 2,3 und 4.

```
def function1():
    """
    Function without params or return
    :return: None
    """
    print('Function 1 is called')

def four_functions():
    """
    Main function
    :return: None
    """
    function1()
    received_from_2 = function2()
    function3('passed Argument to print in function3')
    received_from_4 = function4('passed Argument to print in function4')

if __name__ == '__main__':
    four_functions()
```

Auftrag 2: Einfacher Rechner | File calculator.py

Lösen Sie die Aufgabe im File calculator.py und testen Sie den Code mit den Testfällen in calculator_test.py

Programmieren Sie einfache Taschenrechner-Funktionen (add, substract, multiply, divide, power, root) und rufen Sie diese aus der Main-Funktion auf und drucken Sie die Resultate.

```
def add(TODO):
    #TODO

def main():
    total = add(5,5.5)
    print(total)

if __name__ == '__main__':
    main()
```


- Division durch 0 soll den Text: Division by zero zurückgeben.
- Sollte versucht werden die Nullte Wurzel zu ziehen, so sollte Root by zero zurückgeben.

Berechnung der Quadratwurzel und n-ten Wurzel

Die Berechnung der **Quadratwurzel** und der **n-ten Wurzel** kann in der Mathematik durch die Verwendung von Potenzen vereinfacht verstanden werden.

Quadratwurzel

Die Quadratwurzel einer Zahl x ist die Zahl, die, wenn sie mit sich selbst multipliziert wird, x ergibt. In mathematischer Schreibweise wird die Quadratwurzel von x als \sqrt{x} dargestellt.

Interessanterweise ist die Quadratwurzel mathematisch äquivalent zum Erheben von x in die Potenz 1/2, d.h.,

$$\sqrt{x} = x^{(1/2)}$$

https://wiki.bzz.ch/ Printed on 2025/11/14 09:39

n-te Wurzel

Dieses Konzept lässt sich auch auf die **n-te Wurzel** erweitern. Die n-te Wurzel von x ist die Zahl, die, wenn sie n-mal mit sich selbst multipliziert wird, x ergibt. In mathematischer Schreibweise wird dies als $x^{(1/n)}$ dargestellt.

Zum Beispiel:

- Die dritte Wurzel von x (auch Kubikwurzel genannt) ist x^(1/3).
- Die vierte Wurzel von x ist x^(1/4).

und so weiter.

Diese Darstellung als Potenz ist besonders nützlich, da sie die Anwendung der allgemeinen Regeln der Potenzrechnung ermöglicht, was bei komplexeren mathematischen Berechnungen hilfreich sein kann.

⇒ GitHub Repo für externe Besucher

GitHub Repository https://github.com/templates-python/m319-lu09-a01-first-functions

Lernende am BZZ müssen den Link zum GitHub Classroom Assignment verwenden

M319-LU09

NG SA © Marcel Suter, Kevin Maurizi

From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/de/modul/m319/learningunits/lu09/aufgaben/einfachefunktionen

Last update: 2025/06/23 07:45

