
2026/01/16 05:31 1/4 LU10.A02 - Einleser als Modul

BZZ - Modulwiki - https://wiki.bzz.ch/

LU10.A02 - Einleser als Modul

Ausgangslage

In vielen der Aufgaben im Modul 319 lesen Sie mit input() Eingaben eines Benutzers ein. Ist die
Eingabe eine Zahl, so müssen Sie die Eingabe mit int(input('Zahl eingeben')) in eine
Ganzzahl oder mit float(input('Zahl eingeben')) in eine Fliesskommazahl umwandeln. Gibt
der Benutzer nun aber anstatt einer Zahl einen Buchstaben ein, erhalten Sie einen ValueError
vom Interpreter. Wir möchten uns nun ein Modul mit Funktionen erstellen, welche uns diese Eingaben
validieren und im Falle einer falschen Eingabe eine Fehlermeldung ausgeben und den User erneut zur
Eingabe auffordern.

Der einfachste Weg dieses Problem zu lösen sehen Sie im folgenden abschnitt Pseudocode:

Funktion read_float(text_to_display)
 Start Endlosschleife:
 num =
Einlesen_von_konsole(text_to_display)
 Versuche:
 num = in_float_umwandeln(num)
 Ein ValueError wurde ausgelöst:
 Fehlermeldung ausgeben
 Endlosschleife nochmals durchlaufen
 Kein Error:
 Die Variable num zurückgeben

Wir können mit unserem jetzigen Wissen aus dem Modul 319 leider noch nicht den ganzen
Pseudocode in Python umsetzen. Wir wissen noch nicht wie wir Python etwas versuchen lassen. Um
dieses Problem in Python zu lösen muss etwas Wissen aus dem Modul 320 vorgeholt werden. In
Python gibt es die Möglichkeit das Programm etwas zu versuchen zu lassen und wenn es Schief geht,
dann stürzt das Programm nicht ab sondern läuft weiter. Um dies zu verwirklichen gibt es den Befehl
try-except. Ein try-except-Block sieht in etwa so aus:

try:
 #Code to try
except <Name of Exception>:
 #Code if it fails
else:
 #Code if it works

Im try-Block steht der Code, den Python auszuführen versuchen soll, im except-Block steht der
Code der ausgeführt wird, wenn es nicht geklappt hat. Im else-Block steht der Code der ausgeführt

Last
update:
2025/06/23
07:45

de:modul:m319:learningunits:lu10:aufgaben:einleser https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/aufgaben/einleser?rev=1750657505

https://wiki.bzz.ch/ Printed on 2026/01/16 05:31

wird, wenn es geklappt hat.

Aufgabe

Da Sie jetzt den try-except-Block kennen können wir den Pseudocode jetzt komplett in Python
umsetzen.

Teilaufgabe 1

Nehmen Sie die Github-Classroom Aufgabe an und clonen Sie das Repository in ihre
Entwicklungsumgebung.

main.py

def main():
 # do something
 float = read_float('Please enter a
real number> ')
 int = read_int('Please enter a whole
number> ')

 print(float)
 print(int)

if __name__ == '__main__':
 main()

input_reader.py

"""
input_reader module with input
validation
"""

Erstellen Sie im File input_reader.py die Funktionsdefinition der Funktionen read_float() und
read_int().

https://wiki.bzz.ch/_export/code/de/modul/m319/learningunits/lu10/aufgaben/einleser?codeblock=2
https://wiki.bzz.ch/_export/code/de/modul/m319/learningunits/lu10/aufgaben/einleser?codeblock=3

2026/01/16 05:31 3/4 LU10.A02 - Einleser als Modul

BZZ - Modulwiki - https://wiki.bzz.ch/

Teilauftrag 2

Übersetzen Sie den Pseudocode aus der Ausgangslage in Python code für die Funktion read_float.

def read_float(text_to_display):
 """
 TODO: Erstellen Sie den DocString
 """
 Start Endlosschleife:
 num =
Einlesen_von_konsole(text_to_display)
 Versuche:
 num = in_float_umwandeln(num)
 Ein ValueError wurde ausgelöst:
 Fehlermeldung "Please, enter a real
number!" ausgeben
 Endlosschleife nochmals durchlaufen
 Kein Error:
 Die Variable num zurückgeben

Erstellen Sie einen passenden Docstring wie in LU09 erklärt.

Teilauftrag 3

Überlegen Sie sich, was Sie alles ändern müssen, damit die Funktion read_int sinnvoll funktionieren
würde. Ergänzen Sie ihr Modul input_reader.py mit dieser Funktion.

input_reader.py

def read_float(text_to_display):
 ...

def read_int(text_to_display): #
Fehlermeldung: Please, enter a valid
whole number!
 ...

https://wiki.bzz.ch/modul/m319/learningunits/lu09/funktionen#dokumentationszeichenkette_docstring
https://wiki.bzz.ch/_export/code/de/modul/m319/learningunits/lu10/aufgaben/einleser?codeblock=5

Last
update:
2025/06/23
07:45

de:modul:m319:learningunits:lu10:aufgaben:einleser https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/aufgaben/einleser?rev=1750657505

https://wiki.bzz.ch/ Printed on 2026/01/16 05:31

Teilauftrag 4

Importieren Sie ihr input_reader Modul in ihrem main.py damit das Programm funktioniert.

Import the input_reader module here

def main():
 # do something
 float = read_float('Please enter a real
number> ')
 int = read_int('Please enter a whole
number> ')

 print(float)
 print(int)

if __name__ == '__main__':
 main()

⇒ GitHub Repo für externe Besucher

GitHub Repository https://github.com/templates-python/m319-lu10-a02-reader-module

Lernende am BZZ müssen den Link zum GitHub Classroom Assignment verwenden

M319-LU10

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/aufgaben/einleser?rev=1750657505

Last update: 2025/06/23 07:45

https://github.com/templates-python/m319-lu10-a02-reader-module
https://wiki.bzz.ch/tag/m319-lu10?do=showtag&tag=M319-LU10
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/aufgaben/einleser?rev=1750657505

	LU10.A02 - Einleser als Modul
	Ausgangslage
	Aufgabe
	Teilaufgabe 1
	Teilauftrag 2
	Teilauftrag 3
	Teilauftrag 4

