2026/02/06 16:44 1/7 LU10b - Python-Module

LU10b - Python-Module

Es gibt eigentlich drei verschiedene Mdéglichkeiten, ein Modul in Python zu definieren:

e Ein Modul kann in Python selbst geschrieben werden.

e Ein Modul kann in C geschrieben und zur Laufzeit dynamisch geladen werden, wie das re
(regular expression) Modul.

e Ein eingebautes Modul ist von Haus aus im Interpreter enthalten, wie das Modul itertools.

Der Zugriff auf den Inhalt eines Moduls erfolgt in allen drei Fallen auf die gleiche Weise: mit der
import-Anweisung.

Hier geht es hauptsachlich um Module, die in Python geschrieben sind. Das Tolle an in Python
geschriebenen Modulen ist, dass sie aulRerst einfach zu erstellen sind. Alles, was Sie tun muissen, ist,
eine Datei zu erstellen, die legitimen Python-Code enthalt, und der Datei einen Namen mit der
Erweiterung . py zu geben. Das war's! Es ist keine spezielle Syntax oder Voodoo ndétig.

Nehmen wir zum Beispiel an, Sie haben eine Datei namens mod. py erstellt, die Folgendes enthalt:

mod.py

""" example of a module with variables,
functions and a class """

S "If Comrade Napoleon says it, it
must be right."
a
foolarg
f'arg = {arg}'
Foo:

Mehrere Objekte sind in mod.py definiert:

s (eine Zeichenkette)
a (eine Liste)

foo () (eine Funktion)
Foo (eine Klasse)

Vorausgesetzt, mod. py befindet sich an einem geeigneten Ort, Uber den Sie gleich mehr erfahren
werden, kann auf diese Objekte zugegriffen werden, indem das Modul wie folgt importiert wird:

mod

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_export/code/de/modul/m319/learningunits/lu10/module?codeblock=0

Last update:
2025/12/04 de:modul:m319:learningunits:lu10:module https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574
15:29

mod. s
#If Comrade Napoleon says it, it must be
right.

mod.a
#[100, 200, 300]

mod.foo (['quux', 'corge', 'grault'’
#arg = ['quux', 'corge', 'grault']

x = mod.Foo
X
#<mod.Foo object at 0x03C181F0>

Der Modulsuchpfad

Fahren wir mit dem obigen Beispiel fort und schauen wir uns an, was passiert, wenn Python die
Anweisung ausfuhrt:

import mod Wenn der Interpreter die obige Import-Anweisung ausfuhrt, sucht er nach mod. py in
einer Liste von Verzeichnissen, die aus den folgenden Quellen zusammengestellt wurde:

e Das Verzeichnis, aus dem das Eingabeskript ausgefuhrt wurde

e Die Liste der Verzeichnisse, die in der Umgebungsvariablen PYTHONPATH enthalten sind, falls
diese gesetzt ist. (Das Format fur PYTHONPATH ist betriebssystemabhangig, sollte aber die
PATH-Umgebungsvariable nachahmen).

» Eine installationsabhangige Liste von Verzeichnissen, die zum Zeitpunkt der Installation von
Python konfiguriert wurde

Der resultierende Suchpfad ist in der Python-Variablen sys.path zuganglich, die von einem Modul
namens sys bezogen wird:

sys

sys.path
#['',
"C:\\Users\\peter\\Documents\\Python\\doc"',
"C:\\Python36\\Lib\\idlelib"', 'C:\\Python310\\
python310.zip', 'C:\\Python310\\DLLs",
"C:\\Python310\\lib"', 'C:\\Python310",
"C:\\Python310\\lib\\site-packages']

1

https://wiki.bzz.ch/ Printed on 2026/02/06 16:44

2026/02/06 16:44 3/7 LU10b - Python-Module

Der genaue Inhalt von sys . path ist installationsabhangig.
Die obigen Angaben werden auf lnrem Computer
hochstwahrscheinlich etwas anders aussehen.

Um also sicherzustellen, dass Ihr Modul gefunden wird, mussen Sie eine der folgenden MaBnahmen
ergreifen:

e Legen Sie mod. py in das Verzeichnis, in dem sich das aufrufende Skript befindet.
 Andern Sie die Umgebungsvariable PYTHONPATH so, dass sie das Verzeichnis enthalt, in dem
sich mod. py befindet, bevor Sie den Interpreter starten.
o Oder: Legen Sie mod. py in einem der Verzeichnisse ab, die bereits in der PYTHONPATH-
Variable enthalten sind
e Legen Sie mod. py in eines der installationsabhangigen Verzeichnisse, auf die Sie je nach
Betriebssystem Schreibzugriff haben oder nicht

Zur Laufzeit, manuell

Sie kénnen die Moduldatei in ein beliebiges Verzeichnis Ihrer Wahl ablegen und dann sys.path zur
Laufzeit so andern, dass es dieses Verzeichnis enthalt. In diesem Fall konnten Sie z.B. mod. py in das
Verzeichnis C:\Users\peter ablegen und dann die folgenden Anweisungen eingeben:

sys.path.append(r'C:\Users\peter'

sys.path

, 'C:\\Users\\peter\\Documents\\Python\\doc"',
'C:\\Python36\\Lib\\idlelib', 'C:\\Python36\\python36.zip',
'C:\\Python36\\DLLs', 'C:\\Python36\\lib', 'C:\\Python36',
'C:\\Python36\\lib\\site-packages', 'C:\\Users\\peter']

#[

mod

Zur Laufzeit, automatisch via Skript

Sie kdnnen das Verzeichnis des aktuell ausgeflhrten Skripts direkt in sys.path einfigen. Dies ist
besonders praktisch, wenn Sie mdchten, dass Python automatisch alle Module im gleichen Verzeichnis
wie das ausgefuhrte Skript findet. Dazu konnen Sie das Modul os verwenden, um den Pfad des
aktuellen Skripts zu ermitteln und diesen dann sys.path hinzuzuflgen. Hier ein Beispiel:

Ssys
0s

Fugt den Pfad des aktuellen Skripts zu
sys.path hinzu
script directory

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2025/12/04 de:modul:m319:learningunits:lu10:module https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574

15:29

os.path.dirname(os.path.abspath(_ file
sys.path.append(script directory

sys.path
Die Ausgabe enthalt nun auch das
Verzeichnis des aktuellen Skripts

mod

Durch das Hinzuflgen des Skriptverzeichnisses zu sys.path
konnen Sie sicherstellen, dass alle Module, die sich im
gleichen Verzeichnis wie Ihr Skript befinden, von Python
gefunden und importiert werden kdnnen.

Die import-Anweisung

Modulinhalte werden dem Aufrufer mit der import-Anweisung zur Verfigung gestellt. Die import-
Anweisung kann viele verschiedene Formen annehmen, wie unten gezeigt.

import <Modul Name>

Die einfachste Form ist die bereits oben gezeigte:
modul name

Beachten Sie, dass dies den Inhalt des Moduls fur den Aufrufer nicht direkt zuganglich macht. Jedes
Modul hat einen eigenen Namensraum. Die Anweisung import <Modulname> platziert nur
<Modulname> im Namensraum des Aufrufers. Die Objekte, die im Modul definiert sind, bleiben im
privaten Namensraum des Moduls. Fur den Aufrufer sind die Objekte des Moduls nur dann zuganglich,
wenn mit <modul name>.<object> darauf zugegriffen wird:

Trotz des Imports bleiben s und foo bleiben im privaten
Namensraum des Moduls und sind im lokalen Kontext nicht
von Bedeutung:

mod

S
NameError: name 's' is not defined
foo('quux'

https://wiki.bzz.ch/ Printed on 2026/02/06 16:44

2026/02/06 16:44 5/7

LU10b - Python-Module

#NameError: name 'foo' 1s not defined
Um im lokalen Kontext zuganglich zu sein, muss den Namen
der im Modul definierten Objekte das Kirzel mod
vorangestellt werden:
mod

mod.s
#If Comrade Napoleon says it, it must be
right.

mod. foo('quux'
#arg = quux

import <module_name> as <alt_name>

Sie kdnnen auch ein ganzes Modul unter einem alternativen Namen importieren:

module name alt name
mod my module
my module.a
#[100, 200, 300]

my module.foo('qux’
#arg = qux

from <module_name> import <name(s)>

Eine alternative Form der Import-Anweisung erlaubt es, einzelne Objekte aus dem Modul direkt in

den Namensraum des Aufrufers zu importieren:

module name name (s

Nach Ausfuhrung der obigen Anweisung kann in der Umgebung des Aufrufers auf <name(s)> ohne

den Prafix <module_name> verwiesen werden:

mod s, foo

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2025/12/04 de:modul:m319:learningunits:lu10:module https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574
15:29

S
#If Comrade Napoleon says it, it must be
right.

foo('quux'
#arg = quux

Da bei dieser Form des Imports die Objektnamen direkt in den Namensraum des Aufrufers
eingetragen werden, werden bereits vorhandene Objekte mit demselben Namen Uberschrieben:

a 'foo', 'bar', 'baz'
a
#['foo', 'bar', 'baz']

mod a

a
#[100, 200, 300]

from <module_name> import <name> as <alt_name>

Es ist auch maglich, einzelne Objekte zu importieren, diese aber mit alternativen Namen im lokalen
Namensraum einzutragen:

module name name
alt name name alt name

Dadurch ist es maglich, Namen direkt in den lokalen Namensraum einzugeben, ohne dass es zu
Konflikten mit bereits vorhandenen Namen kommt:

S ‘foo’
a ‘foo', 'bar', 'baz'’
mod S string, a alist

S
#'foo'

string
#'If Comrade Napoleon says it, it must be
right.'

a

https://wiki.bzz.ch/ Printed on 2026/02/06 16:44

2026/02/06 16:44 777 LU10b - Python-Module

#['foo', 'bar', 'baz']
alist
#[100, 200, 300]

Inhalt von RealPython

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m319/learningunits/lul10/module?rev=1764858574

Last update: 2025/12/04 15:29

BZZ - Modulwiki - https://wiki.bzz.ch/

https://realpython.com/python-modules-packages/#python-packages
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574

	LU10b - Python-Module
	Der Modulsuchpfad
	Zur Laufzeit, manuell
	Zur Laufzeit, automatisch via Skript

	Die import-Anweisung
	import <Modul_Name>
	import <module_name> as <alt_name>
	from <module_name> import <name(s)>
	from <module_name> import <name> as <alt_name>

