
2026/02/06 16:44 1/7 LU10b - Python-Module

BZZ - Modulwiki - https://wiki.bzz.ch/

LU10b - Python-Module

Es gibt eigentlich drei verschiedene Möglichkeiten, ein Modul in Python zu definieren:

Ein Modul kann in Python selbst geschrieben werden.
Ein Modul kann in C geschrieben und zur Laufzeit dynamisch geladen werden, wie das re
(regular expression) Modul.
Ein eingebautes Modul ist von Haus aus im Interpreter enthalten, wie das Modul itertools.

Der Zugriff auf den Inhalt eines Moduls erfolgt in allen drei Fällen auf die gleiche Weise: mit der
import-Anweisung.

Hier geht es hauptsächlich um Module, die in Python geschrieben sind. Das Tolle an in Python
geschriebenen Modulen ist, dass sie äußerst einfach zu erstellen sind. Alles, was Sie tun müssen, ist,
eine Datei zu erstellen, die legitimen Python-Code enthält, und der Datei einen Namen mit der
Erweiterung .py zu geben. Das war's! Es ist keine spezielle Syntax oder Voodoo nötig.

Nehmen wir zum Beispiel an, Sie haben eine Datei namens mod.py erstellt, die Folgendes enthält:

mod.py

""" example of a module with variables,
functions and a class """
s = "If Comrade Napoleon says it, it
must be right."
a = [100, 200, 300]

def foo(arg):
 print(f'arg = {arg}')

class Foo:
 pass

Mehrere Objekte sind in mod.py definiert:

s (eine Zeichenkette)
a (eine Liste)
foo() (eine Funktion)
Foo (eine Klasse)

Vorausgesetzt, mod.py befindet sich an einem geeigneten Ort, über den Sie gleich mehr erfahren
werden, kann auf diese Objekte zugegriffen werden, indem das Modul wie folgt importiert wird:

import mod

https://wiki.bzz.ch/_export/code/de/modul/m319/learningunits/lu10/module?codeblock=0

Last update:
2025/12/04
15:29

de:modul:m319:learningunits:lu10:module https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574

https://wiki.bzz.ch/ Printed on 2026/02/06 16:44

print(mod.s)
#If Comrade Napoleon says it, it must be
right.

print(mod.a)
#[100, 200, 300]

mod.foo(['quux', 'corge', 'grault'])
#arg = ['quux', 'corge', 'grault']

x = mod.Foo()
print(x)
#<mod.Foo object at 0x03C181F0>

Der Modulsuchpfad

Fahren wir mit dem obigen Beispiel fort und schauen wir uns an, was passiert, wenn Python die
Anweisung ausführt:

import mod Wenn der Interpreter die obige Import-Anweisung ausführt, sucht er nach mod.py in
einer Liste von Verzeichnissen, die aus den folgenden Quellen zusammengestellt wurde:

Das Verzeichnis, aus dem das Eingabeskript ausgeführt wurde
Die Liste der Verzeichnisse, die in der Umgebungsvariablen PYTHONPATH enthalten sind, falls
diese gesetzt ist. (Das Format für PYTHONPATH ist betriebssystemabhängig, sollte aber die
PATH-Umgebungsvariable nachahmen).
Eine installationsabhängige Liste von Verzeichnissen, die zum Zeitpunkt der Installation von
Python konfiguriert wurde

Der resultierende Suchpfad ist in der Python-Variablen sys.path zugänglich, die von einem Modul
namens sys bezogen wird:

import sys
print(sys.path)
#['',
'C:\\Users\\peter\\Documents\\Python\\doc',
'C:\\Python36\\Lib\\idlelib','C:\\Python310\\
python310.zip', 'C:\\Python310\\DLLs',
'C:\\Python310\\lib','C:\\Python310',
'C:\\Python310\\lib\\site-packages']

2026/02/06 16:44 3/7 LU10b - Python-Module

BZZ - Modulwiki - https://wiki.bzz.ch/

Der genaue Inhalt von sys.path ist installationsabhängig.
Die obigen Angaben werden auf Ihrem Computer
höchstwahrscheinlich etwas anders aussehen.

Um also sicherzustellen, dass Ihr Modul gefunden wird, müssen Sie eine der folgenden Maßnahmen
ergreifen:

Legen Sie mod.py in das Verzeichnis, in dem sich das aufrufende Skript befindet.
Ändern Sie die Umgebungsvariable PYTHONPATH so, dass sie das Verzeichnis enthält, in dem
sich mod.py befindet, bevor Sie den Interpreter starten.

Oder: Legen Sie mod.py in einem der Verzeichnisse ab, die bereits in der PYTHONPATH-
Variable enthalten sind

Legen Sie mod.py in eines der installationsabhängigen Verzeichnisse, auf die Sie je nach
Betriebssystem Schreibzugriff haben oder nicht

Zur Laufzeit, manuell

Sie können die Moduldatei in ein beliebiges Verzeichnis Ihrer Wahl ablegen und dann sys.path zur
Laufzeit so ändern, dass es dieses Verzeichnis enthält. In diesem Fall könnten Sie z.B. mod.py in das
Verzeichnis C:\Users\peter ablegen und dann die folgenden Anweisungen eingeben:

sys.path.append(r'C:\Users\peter')
print(sys.path)
#['', 'C:\\Users\\peter\\Documents\\Python\\doc',
'C:\\Python36\\Lib\\idlelib', 'C:\\Python36\\python36.zip',
'C:\\Python36\\DLLs', 'C:\\Python36\\lib', 'C:\\Python36',
'C:\\Python36\\lib\\site-packages', 'C:\\Users\\peter']

import mod

Zur Laufzeit, automatisch via Skript

Sie können das Verzeichnis des aktuell ausgeführten Skripts direkt in sys.path einfügen. Dies ist
besonders praktisch, wenn Sie möchten, dass Python automatisch alle Module im gleichen Verzeichnis
wie das ausgeführte Skript findet. Dazu können Sie das Modul os verwenden, um den Pfad des
aktuellen Skripts zu ermitteln und diesen dann sys.path hinzuzufügen. Hier ein Beispiel:

import sys
import os

Fügt den Pfad des aktuellen Skripts zu
sys.path hinzu
script_directory =

Last update:
2025/12/04
15:29

de:modul:m319:learningunits:lu10:module https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574

https://wiki.bzz.ch/ Printed on 2026/02/06 16:44

os.path.dirname(os.path.abspath(__file__))
sys.path.append(script_directory)

print(sys.path)
Die Ausgabe enthält nun auch das
Verzeichnis des aktuellen Skripts

import mod

Durch das Hinzufügen des Skriptverzeichnisses zu sys.path
können Sie sicherstellen, dass alle Module, die sich im
gleichen Verzeichnis wie Ihr Skript befinden, von Python
gefunden und importiert werden können.

Die import-Anweisung

Modulinhalte werden dem Aufrufer mit der import-Anweisung zur Verfügung gestellt. Die import-
Anweisung kann viele verschiedene Formen annehmen, wie unten gezeigt.

import <Modul_Name>

Die einfachste Form ist die bereits oben gezeigte:

import <modul_name>

Beachten Sie, dass dies den Inhalt des Moduls für den Aufrufer nicht direkt zugänglich macht. Jedes
Modul hat einen eigenen Namensraum. Die Anweisung import <Modulname> platziert nur
<Modulname> im Namensraum des Aufrufers. Die Objekte, die im Modul definiert sind, bleiben im
privaten Namensraum des Moduls. Für den Aufrufer sind die Objekte des Moduls nur dann zugänglich,
wenn mit <modul_name>.<object> darauf zugegriffen wird:

Trotz des Imports bleiben s und foo bleiben im privaten
Namensraum des Moduls und sind im lokalen Kontext nicht
von Bedeutung:

import mod

print(s)
NameError: name 's' is not defined
foo('quux')

2026/02/06 16:44 5/7 LU10b - Python-Module

BZZ - Modulwiki - https://wiki.bzz.ch/

#NameError: name 'foo' is not defined

Um im lokalen Kontext zugänglich zu sein, muss den Namen
der im Modul definierten Objekte das Kürzel mod
vorangestellt werden:

import mod

print(mod.s)
#If Comrade Napoleon says it, it must be
right.
mod.foo('quux')
#arg = quux

import <module_name> as <alt_name>

Sie können auch ein ganzes Modul unter einem alternativen Namen importieren:

import <module_name> as <alt_name>

import mod as my_module

print(my_module.a)
#[100, 200, 300]
my_module.foo('qux')
#arg = qux

from <module_name> import <name(s)>

Eine alternative Form der Import-Anweisung erlaubt es, einzelne Objekte aus dem Modul direkt in
den Namensraum des Aufrufers zu importieren:

from <module_name> import <name(s)>

Nach Ausführung der obigen Anweisung kann in der Umgebung des Aufrufers auf <name(s)> ohne
den Präfix <module_name> verwiesen werden:

from mod import s, foo

Last update:
2025/12/04
15:29

de:modul:m319:learningunits:lu10:module https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574

https://wiki.bzz.ch/ Printed on 2026/02/06 16:44

print(s)
#If Comrade Napoleon says it, it must be
right.

foo('quux')
#arg = quux

Da bei dieser Form des Imports die Objektnamen direkt in den Namensraum des Aufrufers
eingetragen werden, werden bereits vorhandene Objekte mit demselben Namen überschrieben:

a = ['foo', 'bar', 'baz']
print(a)
#['foo', 'bar', 'baz']

from mod import a
print(a)
#[100, 200, 300]

from <module_name> import <name> as <alt_name>

Es ist auch möglich, einzelne Objekte zu importieren, diese aber mit alternativen Namen im lokalen
Namensraum einzutragen:

from <module_name> import <name> as
<alt_name>[, <name> as <alt_name> …]

Dadurch ist es möglich, Namen direkt in den lokalen Namensraum einzugeben, ohne dass es zu
Konflikten mit bereits vorhandenen Namen kommt:

s = 'foo'
a = ['foo', 'bar', 'baz']

from mod import s as string, a as alist

print(s)
#'foo'
print(string)
#'If Comrade Napoleon says it, it must be
right.'
print(a)

2026/02/06 16:44 7/7 LU10b - Python-Module

BZZ - Modulwiki - https://wiki.bzz.ch/

#['foo', 'bar', 'baz']
print(alist)
#[100, 200, 300]

Inhalt von RealPython

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574

Last update: 2025/12/04 15:29

https://realpython.com/python-modules-packages/#python-packages
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m319/learningunits/lu10/module?rev=1764858574

	LU10b - Python-Module
	Der Modulsuchpfad
	Zur Laufzeit, manuell
	Zur Laufzeit, automatisch via Skript

	Die import-Anweisung
	import <Modul_Name>
	import <module_name> as <alt_name>
	from <module_name> import <name(s)>
	from <module_name> import <name> as <alt_name>

