2026/02/12 05:58 1/3 LU12d - Property (erweitert)

LUl2d - Property (erweitert)

Dieses Thema ist ein Blick in die Objektorientierte
Programmierung im Modul 320.

@ Mit @property und @attribut.setter kann eine Klasse
den Zugriff auf die Attribute kontrollieren. Dieses Prinzip
nennt sich Data Hiding.

property und setter

property
firstname(self):
self. firstname

firstname.setter
firstname(self, value):
self. firstname = value

Wenn wir eine Klasse programmieren, wollen wir das Lesen und Schreiben von Attributen
kontrollieren. Die Kontrolle ob und wie die Werte der Attribute geandert werden kénnen soll in der
Hand der Klasse bleiben. Deshalb schreiben wir zu jedem Attribut eine Getter- und eine Setter-
Methode.

Will ein andere Programmteil den Wert eines Attributs lesen, erfolgt dies Uber die sogenannte
Getter-Methode. Diese Methode wird mit dem Decorator @property definiert. Im einfachsten Fall
gibt diese Methode einfach den Wert des Attributs an den Aufrufer zurlick. Beachten Sie den
Underscore vor dem Variablennamen, z.B. firsthame

In komplexeren Klassen werden einzelne Getter auch eine Verarbeitungslogik beinhalten. Flr unsere
Programme reichen aber einfache Getter.

Um den Wert eines Attributs zu andern, stellt unsere Klasse eine Setter-Methode bereit. Diese
Methode wird mit @attributname.setter definiert. Deren Aufgabe ist es, den Wert eines Attributs
zu andern. Auch hier beschranken wir uns vorerst auf die Grundaufgabe: Nimm den value und
speichere ihn. Beachten Sie den Underscore vor dem Variablennamen, z.B. _firstname

Um das Erstellen von property und setter zu
. vereinfachen, gibt es in PyCharm sogenannte ,Live
@ Templates”. Eine kurze Anleitung zum Erstellen eines
solchen Live Templates finden Sie unter
https://it.bzz.ch/wikiV2/howto/pycharm/property

BZZ - Modulwiki - https://wiki.bzz.ch/


https://it.bzz.ch/wikiV2/howto/pycharm/property

Last update: 2025/06/23 07:45 de:modul:m319:learningunits:lul2:property https://wiki.bzz.ch/de/modul/m319/learningunits/lul2/property

Die vollstandige Klasse wurde dann so aussehen:

member.py

dataclasses

dataclass
Member:

a club member
firstname: str
lastname: str
address: str
place: str

zip code: str
entry year: int
birth year: int
honorary member:

property
firstname(sel
self.

firstname.setter
firstname(sel
self. firstna

property
lastname(self

self.

lastname.setter
lastname(self
self. lastnam

property
address (self

dataclass

bool

f
firstname

f, value
me value

lastname

value
e value

self. address

address.setter
address (self

value

self. address = value
property
place(self
self. place

place.setter

place(self, value

https://wiki.bzz.ch/

Printed on 2026/02/12 05:58


https://wiki.bzz.ch/_export/code/de/modul/m319/learningunits/lu12/property?codeblock=1

2026/02/12 05:58

3/3

LU12d - Property (erweitert)

From:

__name
test person = Person
test person.firstname

self. place = value

property
zip code(self):
self. zip code

zip _code.setter
zip code(self, value):
self. zip code = value

property
birth _year(self):
self. birth year

birth year.setter
birth year(self, value):
self. birth year = value

property
entry year(self):
self. entry year

entry year.setter
entry year(self, value):
self. entry year = value

property
honorary member(self) :

self. honorary member

honorary member.setter

honorary member(self, value):

self. honorary member

__main_ ':

test person

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/de/modul/m319/learningunits/lul2/property

Last update: 2025/06/23 07:45

'Hans'

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m319/learningunits/lu12/property

	LU12d - Property (erweitert)
	property und setter


