2026/01/09 11:10 1/8 LU13a - Spezielle Methoden

LUl3a - Spezielle Methoden

Notizen

Zerlegen in mehrere einzelne Seiten. Beispiele besser ordnen und dokumentieren.

print() von Objekten

Vielleicht haben Sie bereits einmal probiert, eine eigene Klasse direkt mit print () auszugeben.

Das Resultat (hier am Beispiel der Klasse Car) auf der Konsole sah bestimmt irgendwie in dieser Art
aus:

Car(brand='Toyota', model='Corolla', construction=2010)

Das liegt daran, das print() die Methode repr der Klasse Car aufruft, diese Methode wird fur
sie durch den @dataclass Decorator erzeugt. Der Aufbau ist dabei immer identisch, die generierte
Repr-Zeichenkette enthalt den Klassennamen sowie den Namen und die Repr der einzelnen Attribute
in der Reihenfolge, in der sie in der Klasse definiert sind.

_repr__

Die repr__ Methode hat den Zweck, die ,offizielle” String-Darstellung eines Objekts zu erzeugen.
Diese Reprasentation wird far Debugging- und Protokollierungszwecke verwendet und sollte eine
Zeichenkette sein, die, wenn sie ausgewertet (eval()) wird, ein Objekt mit demselben Wert wie das
ursprungliche Objekt erzeugen wirde.

Diese repr__ Methode sollte daher nicht leichtfertig
einfach Uberschrieben werden. Trotzdem gibt es sicherlich
den Fall, dass wir die print()-Ausgabe eines Objektes an
unsere Bedurfnisse anpassen mochten. Dafur gibt es die
__str__ Methode.

e)
—

str

Die Methode str in Python ahnelt der Methode repr_, aber sie wird verwendet, um die
~informelle” String-Darstellung eines Objekts zu erzeugen. Diese Darstellung wird immer dann
verwendet, wenn eine String-Darstellung eines Objekts angefordert wird, z.B. bei der Verwendung der
Funktion print (), der Umwandlung eines Objektes in einen String str(car) oder bei der String-
Verkettung. Die Methode str sollte eine Zeichenkette erzeugen, die benutzerfreundlicher und
leichter zu lesen ist als die _repr__ -Darstellung.

Zu beachten gilt: Istdie str Methode nicht implementiert, so wird beim print () auf die

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;822;8:1/09 de:modul:m319:learningunits:lul3:funktionenfuerklassen https://wiki.bzz.ch/de/modul/m319/learningunits/lul3/funktionenfuerklassen

10:54

implementierte repr__ Methode ausgewichen.

Beispiel:

dataclasses dataclass

dataclass
Person:
name: str
address: str
city: str
zip :str

__name __main_ ':
p = Person('Marcel Ferreira', 'Hinter dem Haus 3'
'Hinterhelfenschwil', '8005"'

Y

Die Ausgabe entspricht nun der Ausgabe der Methode repr , welche
@dataclass fur uns generiert hat.

Person(name='Marcel Ferreira', address='Hinter dem Haus 3',
city="'Hinterhelfenschwil', zip='8005")

Erganzen wir jetzt die str -Methode kdnnen wir die Ausgabe beinflussen:
dataclasses dataclass

dataclass
Person:
name: str
address: str
city: str
zip :str

str (self
self.name + '\n' + self.address + '\n' +

self.zip+ ' ' + self.city

__name___ ' main_ ':
p = Person('Marcel Ferreira', 'Hinter dem Haus 3'
'Hinterhelfenschwil', '8005'

P

https://wiki.bzz.ch/ Printed on 2026/01/09 11:10

2026/01/09 11:10 3/8 LU13a - Spezielle Methoden

Die Ausgabe entspricht nun der Ausgabe der Methode repr__, welche
@dataclass flr uns generiert hat.

Marcel Ferreira
Hinter dem Haus 3
8005 Hinterhelfenschwil

Sonderfall print() von Listen

dataclass
Car
brand: str
model: str
construction: int

__str_ (self):
f"I'm a {self.model} from {self.brand}
constructed in {self.construction}"

__name_ __main_ ":

car = Car('Toyota', 'Corolla’
carl Car('Tesla', 'Model 3'

cars car, carl

car
cars

I'm a Corolla from Toyota constructed in 2010
[Car(brand='Toyota', model='Corolla', construction=2010),
Car(brand='Tesla', model='Model 3', construction=2019)]

Obwohl die Klasse Car die Methode str implementiert hat, wird die repr__ Methode
aufgerufen, wenn mehrere Objekte der Klasse Car in einer Liste geprintet werden. Eine mogliche
Losung fur diesen Fall, ware der Umweg Uber eine Listen-Abstraktionen:

str(item item cars

["I'm a Corolla from Toyota constructed in 2010", "I'm a
Model 3 from Tesla constructed in 2019"]

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;822;8:1/09 de:modul:m319:learningunits:lul3:funktionenfuerklassen https://wiki.bzz.ch/de/modul/m319/learningunits/lul3/funktionenfuerklassen

10:54

Objekte vergleichen

Sie haben sich vielleicht bereits gefragt, wie Sie nun eigene Objekte miteinander vergleichen kdnnen.
Verleiche sind wichtig um beispielsweise sortieren zu konnen. Nehmen wir an, wir haben eine Liste
mit 5 Autos. Und mdchten diese Autos nun nach Jahrgang sortieren.

dataclass

Car
brand: str
model: str

construction: int

__name__ __main_ ":
cars Car('BMW', 'M3' Car('Audi', 'A4'
Car('Mercedes', 'C200'
Car('Tesla', 'Model 3' Car('Toyota’
‘Corolla’

Standardmalig implementiert eine dataclass die _eq -Methode welche fur den == Vergleich
bendtigt wird.

Um verschiedene Arten von Vergleichenwie 1t =<, le =<= gt => ge =>=
zu erlauben, kann man das Argument order des @dataclass Dekorators auf True setzen:

dataclasses dataclass

dataclass(order = True
Car
brand: str
model: str
construction: int

__name " main_ ":
cars Car('BMW', 'M3' Car('Audi', 'A4'
Car('Mercedes', 'C200'
Car('Tesla', 'Model 3' Car('Toyota'
'Corolla’

Auf diese Weise sortiert die Datenklasse die Objekte nach jedem Feld (in der Reihenfolge wie sie
deklariert sind), bis sie einen Wert findet, der nicht gleich ist.

https://wiki.bzz.ch/ Printed on 2026/01/09 11:10

2026/01/09 11:10 5/8 LU13a - Spezielle Methoden

In der Praxis mochte man in der Regel eher einen oder vielleicht 2 bestimmte Werte vergleichen.
Um die Klasse Car nach construction sortierbar zu machen

Im Folgenden finden Sie ein Beispiel, wie Sie diese Vergleichsmethoden fur die Klasse Car definieren
kénnen:

dataclass
Car
brand: str
model: str
construction: int

Lt (self, other):
isinstance(other, Car):
self.construction other.construction:
True
False

~ le (self, other):
isinstance(other, Car):
self.construction other.construction
False

gt (self, other):
isinstance(other, Car):
self.construction other.construction
False

~_ge (self, other):
isinstance(other, Car):
self.construction other.construction
False

~_eq (self, other):
isinstance(other, Car):
self.construction other.construction
False

~_ne_ (self, other):
__eq__ (other

In diesem Beispiel prufen die Methoden 1t , 1le , gt , ge und eq ,obdas
andere Objekt eine Instanz der Klasse Car ist. Ist dies der Fall, vergleichen sie das Attribut
construction der beiden Car-Objekte, um festzustellen, ob sie den angegebenen
Vergleichsoperator erfullen. Wenn das andere Objekt keine Instanz der Klasse Car ist, dann gibt die
Vergleichsmethode False zurtck.

Sobald Sie diese Vergleichsmethoden fur die Klasse Car definiert haben, konnen Sie die Operatoren <,

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2026/01/09
10:54

de:modul:m319:learningunits:lul3:funktionenfuerklassen https://wiki.bzz.ch/de/modul/m319/learningunits/lul3/funktionenfuerklassen

<=, >, >=, == und != verwenden, um Car-Objekte miteinander zu vergleichen. Automatisch werden
nun die von Ihnen definierten Vergleichsmethoden verwendet, um die relative Reihenfolge der
Objekte zu bestimmen. Ein Beispiel:

Create two Car objects
cl = Car('Ford', 'Fiesta'
c2 Car('Toyota', 'Camry’

Check if the first Car is less than the second Car
cl c2:
'cl is less than c2'

'cl is not less than c2'

In diesem Beispiel wird die 1t -Methode der Car-Klasse aufgerufen, um die beiden Car-Objekte
zu vergleichen, und sie gibt True zurick, wenn das Attribut construction des ersten Car-Objekts
kleiner ist als das Attribut construction des zweiten Car-Objekts, und False, wenn dies nicht der
Fall ist.

Die Logik einer Vergleichs-Methode kann auch umfangreicher sein, als nur der Vergleich eines
Attributs.

Lt (self, other):
isinstance(other, Car):
self.make other.make:
True
self.brand other.brand:
True
False

Hier wird zuerst der Hersteller und falls beide gleich sind, das Modell verglichen.

Sortieren

Sobald Sie die Klasse Car sortierbar gemacht haben, kénnen Sie sie auch mit der Funktion sorted()
verwenden, um eine Liste von Car-Objekten zu sortieren. Zum Beispiel:

dataclass

Car
brand: str
model: str

construction: int

https://wiki.bzz.ch/ Printed on 2026/01/09 11:10

2026/01/09 11:10 7/8 LU13a - Spezielle Methoden

Lt (self, other):
isinstance(other, Car):
self.construction other.construction

False
__name__ " main_ ":
cars Car('BMW', 'M3' Car('Audi', 'A4'
Car('Mercedes', 'C200'
Car('Tesla', 'Model 3' Car('Toyota'
‘Corolla’

sorted cars = sorted(cars
sorted cars

[Car(brand='Toyota', model='Corolla', construction=2012),
Car(brand='Mercedes', model='C200', construction=2017),
Car(brand='Audi', model='A4', construction=2018),
Car(brand='BMW', model='M3', construction=2019),
Car(brand='Tesla', model='Model 3', construction=2019)]

Fir ein einfaches Sortieren mit der sorted (list)-Funktion
reicht es, wenn Sie die 1t -Funktion implementiert
haben.

getter_for_not_existing_attribute() - Methode

In manchen Klassen macht es Sinn einen Getter fur einen berechneten Wert zu erganzen, anstatt ein
Attribut flr diesen Wert zu haben. Betrachten wir das Beispiel der Klasse Person, eine Person hat
ein date of birth, das age der Person ist aber jedes Jahr ein anderes. Es macht also keinen Sinn,
das Attribut age in der Klasse zu speichern, denn der Wert des Attributes ist spatestens nach 365
Tagen wieder veraltet.

dataclasses dataclass
datetime datetime
dataclass
Person:
name: str

date of birth: datetime

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;82258:1/09 de:modul:m319:learningunits:lul3:funktionenfuerklassen https://wiki.bzz.ch/de/modul/m319/learningunits/lul3/funktionenfuerklassen

10:54

Trotzdem kann es ganz praktisch sein, das Alter einer Person mit einer Methode abfragen zu kénnen.
Wir erganzen den Code also um das @property age und berechnen in der Methode das Alter der
Person und geben dieses zurlck.

dataclasses dataclass
datetime datetime
dataclass
Person:
name: str

date of birth: datetime

property
age(self):
datetime.now().year - self.date of birth.year
__nhame_ ' main_ ':
p Person('Peter', datetime
p.age

~ Flr das Speichern von Datumswerten ist der Datentyp
@ datetime aus dem Modul datetime hervorragend
geeignet. Mehr dazu finden Sie in der Learningunit LU14 -
DateTime.

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m319/learningunits/lul3/funktionenfuerklassen

Last update: 2026/01/09 10:54

https://wiki.bzz.ch/ Printed on 2026/01/09 11:10

https://wiki.bzz.ch/de/modul/m319/learningunits/lu14/start
https://wiki.bzz.ch/de/modul/m319/learningunits/lu14/start
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m319/learningunits/lu13/funktionenfuerklassen

	LU13a - Spezielle Methoden
	print() von Objekten
	__repr__
	__str__
	Beispiel:
	Sonderfall print() von Listen

	Objekte vergleichen
	Sortieren

	getter_for_not_existing_attribute() - Methode

