2026/02/04 03:30 1/4 LUI1c - Pytest

LUllc - Pytest

K Pytest ist ein Testframework um einzelne Funktionen eines
Programms automatisiert zu testen.

Grundlagen

Das fortlaufende Testen deiner Programmfunktionen ist ein wichtiger Schritt, um die korrekte
Verarbeitung sicherzustellen. Jeder neu geschriebene oder veranderte Code kann Fehler enthalten.
Anstatt jedesmal manuell alle Tests durchzuflhren, wollen wir die Tests automatisieren. Dies
bedeutet zwar einen zusatzlichen Aufwand, um die Testfunktionen zu schreiben. Diese Zeit sparen wir
aber wieder ein, wenn wir diese Tests immer und immer wieder nutzen konnen.

Far die Programmieraufgaben in den Programmiermodulen sind die Testfunktionen bereits
vorgegeben. Daher konzentrieren wir uns darauf, diese Tests und deren Resultate zu verstehen.

Aufbau einer Testfunktion

Die einzelnen Unit Tests werden als Funktionen in Python programmiert. Zum Beispiel:

test normal
result factorial
result

e Der Funktionsname flr den Test muss mit test beginnen. Andernfalls erkennt pytest die
Funktion nicht.

e Wir rufen die zu testende Funktion (im Beispiel factorial) mit den Testdaten auf.

e Der Befehl assert vergleicht das tatsachliche Resultat mit dem erwarteten Resultat.

Assert

Der Befehl assert ist eine spezielle Bedingung, die wir zum Testen und Debuggen von Code
verwenden. Falls die Bedingung erfullt ist, wird true zurick gegeben. Sonst wird eine
AssertionError-Exception geworfen. Wir konnten das gleiche Resultat auch mit if/else
erreichen:

assert if / else

if result == 5040:
return true

else:
raise AssertionError

assert result == 5040

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update: 2025/06/25 02:13 de:modul:m431:learningunits:lull:pytest https://wiki.bzz.ch/de/modul/m431/learningunits/lull/pytest

Tests durchfuhren

Einzelne Tests

Wahrend der Entwicklung flhre ich jede Testfunktion einzeln aus. Dadurch werde ich nicht von einer
grossen Anzahl an Fehlermeldungen auf einmal Uberwaltigt.

Um eine einzelne Testfunktion auszufuhren, kann ich ...

¢ a) ... auf das grune Dreieck-Symbol vor dem Funktionsnamen klicken.
e b)...im Terminal pytest -k TESTFUNKTION eingeben.
Ersetze TESTFUNKTION mit dem Namen der Funktion.

Vollstandiger Test

Bevor ich einen Push ins GitHub-Repository mache, fihre ich jeweils alle Testfunktionen aus. Dadurch
stelle ich sicher, dass meine Anderungen keine unerwarteten Auswirkungen auf andere
Programmteile haben.

Testresultate auswerten

Falls ein Test nicht erfolgreich war, musst du die Ausgaben analysieren.

Beispiel 1

E AssertionError: assert '7\n' == '0O\n'
E -0

E + 7

Hier wurde der Test ausgefiihrt, aber das Resultat entspricht nicht den Erwartungen.

e Erwartetes Resultat: '0'
e Tatsachliches Resultat: '7'

https://wiki.bzz.ch/ Printed on 2026/02/04 03:30


https://wiki.bzz.ch/_detail/de/modul/m431/learningunits/lu11/pytest_terminal.png?id=de%3Amodul%3Am431%3Alearningunits%3Alu11%3Apytest

2026/02/04 03:30 3/4 LUI1c - Pytest

Ubrigens: Das '\n' steht fiir einen Zeilenumbruch.

Beispiel 2

divider test.py::test 2 FAILED

[100%]

divider test.py:11 (test 2)

monkeypatch = < pytest.monkeypatch.MonkeyPatch object at 0x000001BS8EC7BO8EO>
capsys = < pytest.capture.CaptureFixture object at Ox000001B8EC7BOAFO>

def test 2(monkeypatch, capsys):
inputs = iter(['0"', '7'])
monkeypatch.setattr('builtins.input', lambda : next(inputs))
> divider.main()

divider test.py:15:

def main():
Ermittelt den grdéssten gemeinsamen Teiler von zwei Ganzzahlen
:return: None
first number = int(input("Gib die erste Ganzzahl ein > "))
second number = int(input("Gib die zweite Ganzzahl ein > "))

while second number != 0:
> foo = second number / first number
E ZeroDivisionError: division by zero

divider.py:9: ZeroDivisionError

Bei diesem Beispiel ist das Programm abgestlrzt. Eine wichtige Information steckt in der letzten Zeile:
divider.py:9: ZeroDivisionError:

e Das Modul divider. py hat den Absturz verursacht.
e Der Absturz erfolgte auf Zeile 9 des Moduls
e Ein ZeroDivisionError wurde ausgelost.

In einem solchen Fall muss du die Programmlogik genau studieren und evtl. den Test mit Hilfe des
Debuggers schrittweise durchfuhren.

M431-LU11

=l Marcel Suter, Kevin Maurizi

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/tag/m431-lu11?do=showtag&tag=M431-LU11
https://creativecommons.org/licenses/by-nc-sa/4.0/

Last update: 2025/06/25 02:13 de:modul:m431:learningunits:lull:pytest https://wiki.bzz.ch/de/modul/m431/learningunits/lull/pytest

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m431/learningunits/lull/pytest

Last update: 2025/06/25 02:13

https://wiki.bzz.ch/ Printed on 2026/02/04 03:30


https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m431/learningunits/lu11/pytest

	LU11c - Pytest
	Grundlagen
	Aufbau einer Testfunktion
	Assert

	Tests durchführen
	Einzelne Tests
	Vollständiger Test
	Testresultate auswerten
	Beispiel 1
	Beispiel 2




