
2026/02/04 06:50 1/3 LU11c - Pytest

BZZ - Modulwiki - https://wiki.bzz.ch/

LU11c - Pytest

Pytest ist ein Testframework um einzelne Funktionen eines
Programms automatisiert zu testen.

Grundlagen

Das fortlaufende Testen deiner Programmfunktionen ist ein wichtiger Schritt, um die korrekte
Verarbeitung sicherzustellen. Jeder neu geschriebene oder veränderte Code kann Fehler enthalten.
Anstatt jedesmal manuell alle Tests durchzuführen, wollen wir die Tests automatisieren. Dies
bedeutet zwar einen zusätzlichen Aufwand, um die Testfunktionen zu schreiben. Diese Zeit sparen wir
aber wieder ein, wenn wir diese Tests immer und immer wieder nutzen können.

Für die Programmieraufgaben in den Programmiermodulen sind die Testfunktionen bereits
vorgegeben. Daher konzentrieren wir uns darauf, diese Tests und deren Resultate zu verstehen.

Aufbau einer Testfunktion

Die einzelnen Unit Tests werden als Funktionen in Python programmiert. Zum Beispiel:

def test_normal():
 result = factorial(7)
 assert result == 5040

Der Funktionsname für den Test muss mit test beginnen. Andernfalls erkennt pytest die
Funktion nicht.
Wir rufen die zu testende Funktion (im Beispiel factorial) mit den Testdaten auf.
Der Befehl assert vergleicht das tatsächliche Resultat mit dem erwarteten Resultat.

Assert

Der Befehl assert ist eine spezielle Bedingung, die wir zum Testen und Debuggen von Code
verwenden. Falls die Bedingung erfüllt ist, wird true zurück gegeben. Sonst wird eine
AssertionError-Exception geworfen. Wir könnten das gleiche Resultat auch mit if/else
erreichen:

assert if / else

assert result == 5040

if result == 5040:
 return true
else:
 raise AssertionError

Last update:
2025/06/23 15:38 de:modul:m431:learningunits:lu11:pytest https://wiki.bzz.ch/de/modul/m431/learningunits/lu11/pytest?rev=1750685905

https://wiki.bzz.ch/ Printed on 2026/02/04 06:50

Tests durchführen

Einzelne Tests

Während der Entwicklung führe ich jede Testfunktion einzeln aus. Dadurch werde ich nicht von einer
grossen Anzahl an Fehlermeldungen auf einmal überwältigt.

Um eine einzelne Testfunktion auszuführen, kann ich …

a) … auf das grüne Dreieck-Symbol vor dem Funktionsnamen klicken.
b) … im Terminal pytest -k TESTFUNKTION eingeben.
Ersetze TESTFUNKTION mit dem Namen der Funktion.

Vollständiger Test

Bevor ich einen Push ins GitHub-Repository mache, führe ich jeweils alle Testfunktionen aus. Dadurch
stelle ich sicher, dass meine Änderungen keine unerwarteten Auswirkungen auf andere
Programmteile haben.

Testresultate auswerten

Falls ein Test nicht erfolgreich war, musst du die Ausgaben analysieren.

Beispiel 1

E AssertionError: assert '7\n' == '0\n'
E - 0
E + 7

Hier wurde der Test ausgeführt, aber das Resultat entspricht nicht den Erwartungen.

Erwartetes Resultat: '0'
Tatsächliches Resultat: '7'

Übrigens: Das '\n' steht für einen Zeilenumbruch.

Beispiel 2

divider_test.py::test_2 FAILED
[100%]
divider_test.py:11 (test_2)
monkeypatch = <_pytest.monkeypatch.MonkeyPatch object at 0x000001B8EC7B08E0>

https://wiki.bzz.ch/_detail/modul/m431/learningunits/lu11/pytest_terminal.png?id=de%3Amodul%3Am431%3Alearningunits%3Alu11%3Apytest

2026/02/04 06:50 3/3 LU11c - Pytest

BZZ - Modulwiki - https://wiki.bzz.ch/

capsys = <_pytest.capture.CaptureFixture object at 0x000001B8EC7B0AF0>

 def test_2(monkeypatch, capsys):
 inputs = iter(['0', '7'])
 monkeypatch.setattr('builtins.input', lambda _: next(inputs))
> divider.main()

divider_test.py:15:
_ _
_ _

 def main():
 """
 Ermittelt den grössten gemeinsamen Teiler von zwei Ganzzahlen
 :return: None
 """
 first_number = int(input("Gib die erste Ganzzahl ein > "))
 second_number = int(input("Gib die zweite Ganzzahl ein > "))
 while second_number != 0:
> foo = second_number / first_number
E ZeroDivisionError: division by zero

divider.py:9: ZeroDivisionError

Bei diesem Beispiel ist das Programm abgestürzt. Eine wichtige Information steckt in der letzten Zeile:
divider.py:9: ZeroDivisionError:

Das Modul divider.py hat den Absturz verursacht.
Der Absturz erfolgte auf Zeile 9 des Moduls
Ein ZeroDivisionError wurde ausgelöst.

In einem solchen Fall muss du die Programmlogik genau studieren und evtl. den Test mit Hilfe des
Debuggers schrittweise durchführen.

M431-LU11

 Marcel Suter, Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/de/modul/m431/learningunits/lu11/pytest?rev=1750685905

Last update: 2025/06/23 15:38

https://wiki.bzz.ch/tag/m431-lu11?do=showtag&tag=M431-LU11
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/de/modul/m431/learningunits/lu11/pytest?rev=1750685905

	LU11c - Pytest
	Grundlagen
	Aufbau einer Testfunktion
	Assert

	Tests durchführen
	Einzelne Tests
	Vollständiger Test
	Testresultate auswerten
	Beispiel 1
	Beispiel 2

