
2025/11/25 15:16 1/4 LU06b - SQL-DQL: Select from one table

BZZ - Modulwiki - https://wiki.bzz.ch/

LU06b - SQL-DQL: Select from one table

The simplest SELECT is reading from a table, as we don't have to deal with the connection between
other tables. Let's have a quick look on the different parts of an average SELECT statement.
Therefore, we will use our Customer Table as practical example for demonstration purposes.

SELECT clause

Souce: W3Schools | SELECT clause

We can use the SELECT in different ways, e.g

SELECT *
* (asterix) stands here for all columns in the table
the entire content of the table, columns as created, sorted by the primary key in
ascending order.

SELECT myColumn1, myColumn3, myColumn5
By specifying the columns we want to retrieve, we can reduce the output according to our
needs.
The target columns are to seperated by commas

SELECT myColumn3, myColumn5, myColumn1
We can also change the order in which the columns are to be displayed

FROM clause

Our first SQL statement is almost complete, for we need to name the source from which we want to
retrieve the data. In our case it is the table Customer. Our SELECT including the FROM clause would
look like:

 SELECT *
 FROM Customers;

https://wiki.bzz.ch/_detail/modul/m290/learningunits/lu04/theorie/screenshot_2024-08-30_095010.png?id=en%3Amodul%3Am290%3Alearningunits%3Alu04%3Atheorie%3Ab_onetable
https://www.w3schools.com/sql/sql_select.asp

Last update:
2024/10/17
12:34

en:modul:m290:learningunits:lu04:theorie:b_onetable https://wiki.bzz.ch/en/modul/m290/learningunits/lu04/theorie/b_onetable

https://wiki.bzz.ch/ Printed on 2025/11/25 15:16

WHERE clause

Source: W3Schools | WHERE clause

By adding the WHERE clause to the base SQL statement, we can reduce our output. In other words,
we filter our output according to the defined criterias. E.g. if we only want to select data from one
particular postal code 05023, we simply add that in our WHERE clause as shown below:

 SELECT *
 FROM Customers
 WHERE PostalCode ='05023';

ORDER BY clause

Source: W3Schools | ORDER BY clause

In modern web applications, it is common for us to be able to choose how we want to retrieve the
data, as the usual sorting criteria are name, date of birth or social security number. We realize this by
the adding the keywords ORDER BY to our SQL statement, followed by the keywords ASC or DESC.
Our SQL statement hen would look like:

SELECT PostalCode, CustomerName, ContactName
FROM Customers
ORDER BY PostalCode DESC ;

In this case we call up a list of customers (Customername, ContanctName, PostalCode), which is
ordered descending by the zip code. Hence, the resultset looks like:

https://www.w3schools.com/sql/sql_where.asp
https://www.w3schools.com/sql/sql_orderby.asp

2025/11/25 15:16 3/4 LU06b - SQL-DQL: Select from one table

BZZ - Modulwiki - https://wiki.bzz.ch/

Operators

Source: W3Schools | SQL Operators

It might be necessary to get data only to one specific person or product, or we want to know which
products are on stock. For such cases SQL offers, as many programming languages, a variety of
Operators which help to optimize our result set. Relevant for our use are the folling operators:

Arithmetical Operators

Operator Description Example Result
+ Addition SELECT 30 + 20 + 10; 60
* Subtracting SELECT 30 + -10 - 40; -2
* Multiplication SELECT 1 * 2 * 3 * 4; 24
/ Division SELECT 4 % 3 1.33333…
% Modulo division, integer rest of a division SELECT 17 % 5 ; 2
DIV Integer division, diggits before the coma. SELECT 17 DIV 5 ; 3

SQL Comparison Operators

Operator Description Example
= Equal to SELECT * FROM Products WHERE Price = 18;
> Greater than SELECT * FROM Products WHERE Price > 30;
< Less than SELECT * FROM Products WHERE Price < 30;
>= Greater than or equal to SELECT * FROM Products WHERE Price >= 30;
< = Less than or equal to SELECT * FROM Products WHERE Price < = 30;

https://wiki.bzz.ch/_detail/modul/m290/learningunits/lu04/theorie/screenshot_2024-08-30_125407.png?id=en%3Amodul%3Am290%3Alearningunits%3Alu04%3Atheorie%3Ab_onetable
https://www.w3schools.com/sql/sql_operators.asp

Last update:
2024/10/17
12:34

en:modul:m290:learningunits:lu04:theorie:b_onetable https://wiki.bzz.ch/en/modul/m290/learningunits/lu04/theorie/b_onetable

https://wiki.bzz.ch/ Printed on 2025/11/25 15:16

Operator Description Example
<> Not equal to SELECT * FROM Products WHERE Price <> 18;

SQL Logical Operators

Operator Description Example

AND TRUE if all the conditions separated by
AND is TRUE

SELECT * FROM Customers WHERE City =
„London“ AND Country = „UK“;

BETWEEN TRUE if the operand is within the range of
comparisons

SELECT * FROM Products WHERE Price
BETWEEN 50 AND 60;

LIKE TRUE if the operand matches a pattern SELECT * FROM Customers WHERE City LIKE
's%';

NOT Displays a record if the condition(s) is NOT
TRUE

SELECT * FROM Customers WHERE City NOT
LIKE 's%';

OR TRUE if any of the conditions separated by
OR is TRUE

SELECT * FROM Customers WHERE City =
„London“ OR Country = „UK“;

Vocabulary
English German
clause Abschnitt
to ascend aufsteigen
to descend absteigend
to retrieve abrufen
regarding bezüglich
according to gemäss

 Volkan Demir

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m290/learningunits/lu04/theorie/b_onetable

Last update: 2024/10/17 12:34

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m290/learningunits/lu04/theorie/b_onetable

	LU06b - SQL-DQL: Select from one table
	SELECT clause
	FROM clause
	WHERE clause
	ORDER BY clause
	Operators
	Arithmetical Operators
	SQL Comparison Operators
	SQL Logical Operators

	Vocabulary

