
2026/02/03 19:54 1/5 LU07c - SQL-DDL: Constraint Management

BZZ - Modulwiki - https://wiki.bzz.ch/

LU07c - SQL-DDL: Constraint Management

Source:

W3Schools | Constraints | Overview1.
W3Schools | Constraints | PRIMARY KEY2.
W3Schools | Constraints | AUTO_INCREMENT3.
W3Schools | Constraints | FOREIGN KEY4.
W3Schools | Constraints | NOT NULL5.
W3Schools | Constraints | UNIQUE6.

Learning Objectives

Discuss what database CONSTRAINTS are and for they are needed1.
Explain the four most important CONSTRAINTS in database systems2.
Apply CONSTRAINTS to entity and realation tables in databases3.

Overview

Sources:

Youtube-DE | Übersicht CONSTRAINTS
Youtube-EN | CONSTRAINT Tutorial

MySQL constraints ensure data integrity, enforcing rules at the database level. CONSTRAINTS restrict
the type of data that can be inserted into tables, preventing invalid entries and ensuring relationships
between tables remain accurate. The most common constraints in MySQL are

PRIMARY KEY1.
AUTO_INCREMENT2.
NOT NULL3.
UNIQUE4.
FOREIGN KEY5.

Let’s explore these CONSTRAINTS with their syntax and practical examples.

1. PRIMARY KEY

The Primary Key constraint uniquely identifies each record in a table. A primary key column (or a set
of columns) must contain unique, non-null values. Each table can have only one primary key.

General Syntax

CREATE TABLE table_name (
 column_name1 datatype PRIMARY KEY,
 column_name2 datatype

https://www.w3schools.com/sql/sql_constraints.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_autoincrement.asp W3Schools
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.youtube.com/watch?v=NNrkJUK_euE
https://www.youtube.com/watch?v=pSS-9Nt2BF0

Last update: 2024/10/17
12:42 en:modul:m290:learningunits:lu05:theorie:03 https://wiki.bzz.ch/en/modul/m290/learningunits/lu05/theorie/03

https://wiki.bzz.ch/ Printed on 2026/02/03 19:54

);

Example

In the follwoing example, customer_id is the primary key, ensuring that every customer has a unique
ID. It prevents any duplication of the customer_id.

CREATE TABLE customers (
 customer_id INT PRIMARY KEY,
 customer_name VARCHAR(50)
);

2. AUTO INCREMENT

The AUTO_INCREMENT attribute automatically generates a unique number for new rows. It is typically
used with the primary key to create unique identifiers without manual input.

General Syntax

CREATE TABLE table_name (
 column_name datatype AUTO_INCREMENT,
 PRIMARY KEY (column_name)
);

Example

CREATE TABLE products (
 product_id INT AUTO_INCREMENT PRIMARY KEY,
 product_name VARCHAR(50)
);

Here, product_id automatically increments each time a new row is inserted, ensuring a unique ID for
every product.

3. NOT NULL

The NOT NULL constraint ensures that a column cannot contain a NULL value. It is used when the
column must always have a value.

General Syntax

CREATE TABLE table_name (
 column_name datatype NOT NULL
);

Example

CREATE TABLE employees (

2026/02/03 19:54 3/5 LU07c - SQL-DDL: Constraint Management

BZZ - Modulwiki - https://wiki.bzz.ch/

 employee_id INT PRIMARY KEY,
 employee_name VARCHAR(50) NOT NULL
);

In this example, the employee_name column is constrained to never contain a NULL value, ensuring
every employee has a name.

4. UNIQUE

The UNIQUE constraint ensures that all values in a column (or a set of columns) are unique across the
table. Unlike the primary key, a table can have multiple unique constraints.

General Syntax

CREATE TABLE table_name (
 column_name datatype UNIQUE
);

Example

CREATE TABLE users (
 user_id INT PRIMARY KEY,
 email VARCHAR(100) UNIQUE
);

In this case, the email column must contain unique values. No two users can have the same email
address.

5. FOREIGN KEY

The Foreign Key constraint ensures referential integrity by linking a column in one table to the
primary key of another. It establishes a relationship between two tables and enforces the rule that
data in the foreign key column must match an existing primary key in the referenced table.

General Syntax

CREATE TABLE table_name (
 column_name1 datatype,
 column_name2 datatype,
 FOREIGN KEY (column_name1) REFERENCES another_table(primary_key_column)
);

Example

CREATE TABLE orders (
 order_id INT PRIMARY KEY,
 customer_id INT,
 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)

Last update: 2024/10/17
12:42 en:modul:m290:learningunits:lu05:theorie:03 https://wiki.bzz.ch/en/modul/m290/learningunits/lu05/theorie/03

https://wiki.bzz.ch/ Printed on 2026/02/03 19:54

);

In this example, customer_id in the orders table references the customer_id in the customers table.
This relationship ensures that any customer_id in the orders table corresponds to an existing
customer in the customers table.

Practical Example with Multiple Constraints

Let’s create a students table to demonstrate multiple constraints in action.

CREATE TABLE students (
 student_id INT AUTO_INCREMENT PRIMARY KEY,
 student_name VARCHAR(50) NOT NULL,
 email VARCHAR(100) UNIQUE,
 class_id INT,
 FOREIGN KEY (class_id) REFERENCES classes(class_id)
);

Summary

In summary, MySQL constraints like Primary Key, Foreign Key, NOT NULL, AUTO_INCREMENT, and
UNIQUE are essential for maintaining data accuracy, integrity, and consistency across a database.
They enforce rules at the database level, ensuring reliable data relationships and preventing errors.

PRIMARY KEY is applied to student_id to uniquely identify each data record in the table.
AUTO_INCREMENT is applied to student_id to automatically generate a unique ID for each
student.
NOT NULL is applied to student_name, requiring every student to have a name.
UNIQUE ensures that no two students can register with the same email.
FOREIGN KEY links class_id to another table classes, maintaining the relationship between
students and their class.

Why Use Constraints?

Data Integrity: Constraints ensure that the data stored in the database adheres to rules, such
as ensuring unique IDs or valid foreign key relationships.
Preventing Errors: Constraints like NOT NULL prevent the insertion of incomplete or invalid
data.
Automation: AUTO_INCREMENT simplifies the process of assigning unique identifiers without
user input.

Vocabulary
English Deutsch
constraint Bedingung, Beschränkung
to enforce durchsetzen

2026/02/03 19:54 5/5 LU07c - SQL-DDL: Constraint Management

BZZ - Modulwiki - https://wiki.bzz.ch/

English Deutsch
to restrict einschränken, beschränken
to prevent verhindern
uniquely eindeutig

 Volkan Demir

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m290/learningunits/lu05/theorie/03

Last update: 2024/10/17 12:42

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m290/learningunits/lu05/theorie/03

	LU07c - SQL-DDL: Constraint Management
	Learning Objectives
	Overview
	1. PRIMARY KEY
	2. AUTO INCREMENT
	3. NOT NULL
	4. UNIQUE
	5. FOREIGN KEY

	Practical Example with Multiple Constraints
	Summary
	Vocabulary

