2026/02/03 10:41 1/5 LU10b - Multi-Node Lab mit Vagrant (verteilte Systeme)

LU10a - Multi-Node Lab mit Vagrant
(verteilte Systeme)

Ziel: Du kannst mit Vagrant eine reproduzierbare Multi-
VM-Umgebung (mehrere Nodes) definieren, starten,
vernetzen und verwalten - als Praxis-Setup fur verteilte

Systeme.
Ubersicht
Begriff Kurz erklart
Vv Tool, um VM-Umgebungen als Code zu definieren (Vagrantfile) und
agrant .
reproduzierbar zu starten.
VM (Virtual Machine) Komplettes virtuelles Betriebssystem (Kernel + Userspace) auf einem Host.
Provider VM-Backend, z.B. VirtualBox, VMware, Hyper-V (je nach System).
Box Vorgefertigtes VM-Image (Basis-0S), z.B. Ubuntu.

Automatische Konfiguration nach dem Boot: Pakete installieren, Services
konfigurieren, Dateien kopieren...

Multi-Node Mehrere VMs als , Cluster” (z.B. db/api/proxy) inkl. Netzwerk.

Provisioning

Warum Vagrant im Modul , Verteilte Systeme*?

In verteilten Systemen geht es selten nur um ,,einen Dienst auf einem Rechner”. Typische Themen
sind:

¢ Mehrere Nodes (Dienste sind verteilt)

¢ Netzwerk & Ports (Kommunikation zwischen Nodes)

e Fehlersuche uber Maschinen-Grenzen (Logs, Connectivity, Firewall)
* Reproduzierbarkeit (alle Lernenden haben *dieselbe* Ausgangslage)

Vagrant liefert dir genau das: ein Vagrantfile - ein Befehl - identische Multi-VM-Umgebung.

systemd, Kernel-nahe Tools, realistische Netzwerkkonfiguration, Legacy-Stacks. Dafur

i i Merke: Container sind ,leicht” und schnell - aber manchmal brauchst du das volle OS:
sind VMs top.

Vagrant Architektur in der Praxis

Vagrant ist im Kern ein Orchestrator um diese Teile:

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2026/01/28
08:12

en:modul:m321_aws:learningunits:lul0:vagrantl https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lul0/vagrantl?rev=1769584329

» Vagrantfile: ,Bauplan” (Ruby-DSL, aber sehr lesbar)

¢ Box: Basis-System (z.B. Ubuntu)

e Provider: Virtualisierung (meist VirtualBox)

e Communicator: Kommunikation in die VM (typisch SSH)

* Synced Folders: Ordner zwischen Host und VM teilen

* Networking: NAT, Port-Forwarding, private/public network
e Provisioning: Shell/Ansible/etc. (kommt in LU10b)

Wichtigste Befehle (Workflow)

1im Projektordner
vagrant init
vagrant up

vagrant status
vagrant ssh <name>
vagrant halt
vagrant reload
vagrant provision
vagrant destroy -f

Vagrantfile erstellen (Basis)

VMs starten/erstellen

Status ansehen

in eine bestimmte VM einloggen

sauber herunterfahren

Neustart (Konfiganderungen ubernehmen)
Provisioning erneut ausfihren

VMs léschen (Achtung: Daten weg)

HOH K R R R H R

Netzwerk-Grundlagen (was du wirklich brauchst)

In Multi-Node Labs sind diese Netzwerkarten zentral:

NAT (Standard)

e VM kommt ,raus ins Internet”
e andere VMs erreichen sie nicht zuverlassig Uber NAT

Port Forwarding

¢ Host-Port -» VM-Port (z.B. localhost:8080 - VM:80)
e gut flr ,Service im Browser testen”

Beispiel:

config.vm.network "forwarded port", guest: 80, host: 8080

https://wiki.bzz.ch/ Printed on 2026/02/03 10:41

2026/02/03 10:41 3/5 LU10b - Multi-Node Lab mit Vagrant (verteilte Systeme)

Private Network (Host-only / internes Netz)

¢ Jede VM bekommt eine fixe interne IP
¢ VMs kénnen sich direkt erreichen (perfekt fur verteilte Systeme)

Beispiel:

config.vm.network "“private network", ip: "192.168.56.11"

Didaktik-Tipp: Fiur verteilte Systeme ist ein Private Network mit fixen IPs am
&3 besten: reproduzierbar, einfach zu debuggen, klare Topologie.

Beispiel: Multi-Node Setup (db / api / proxy)

Die Idee:

e db: Datenbank/Cache
e api: Anwendung/Service
e proxy: Reverse Proxy / Einstiegspunkt

Vagrantfile (Beispiel)

Vagrantfile
Vagrant.configure("2" config
config.vm.box = "ubuntu/jammy64"

Gemeinsame Defaults
config.vm.provider "virtualbox" vb
vb.cpus = 2
vb.memory = 2048

--- db node ---
config.vm.define "db" db
db.vm.hostname = "db"
db.vm.network "private network", ip: "192.168.56.11"
Optional: DB nach aussen testbar machen (nur falls nédtig)
db.vm.network "forwarded port", gquest: 5432, host: 15432

--- api node ---
config.vm.define "api" api
api.vm.hostname = "api"
api.vm.network "private network", ip: "192.168.56.12"
api.vm.network "forwarded port", guest: 8000, host: 18000

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;83278:1/28 en:modul:m321_aws:learningunits:lul0:vagrantl https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lul0/vagrantl?rev=1769584329

08:12

end

--- proxy node ---

config.vm.define "proxy" do |proxy|
proxy.vm.hostname = "proxy"

proxy.vm.network "private network", ip: "192.168.56.13"
Reverse proxy nach aussen
proxy.vm.network "forwarded port", guest: 80, host: 8080
end
end

Starten und testen

vagrant up

in die proxy VM

vagrant ssh proxy

ip a

ping -c 2 192.168.56.12 # api
ping -c 2 192.168.56.11 # db

Synced Folders (Code teilen)

Standardmassig wird der Projektordner oft nach “/vagrant™ gemountet.

vagrant ssh api
1s -la /vagrant

Das ist praktisch, wenn du z.B. ,api-code” auf dem Host bearbeitest, aber in der VM laufen lasst.

Debugging-Grundmuster (sehr prufungsrelevant)

Wenn ,verteiltes System” nicht funktioniert, geh systematisch vor:

Ebene Check

DNS/Hosts Konnen die Nodes Namen auflésen? (oder IPs nutzen)
Routing/Netz Ping / traceroute / “ipa’, ‘ipr

Port offen? | 'ss-tulpn’, "'nc -vz <ip> <port>"

https://wiki.bzz.ch/ Printed on 2026/02/03 10:41

2026/02/03 10:41 5/5 LU10b - Multi-Node Lab mit Vagrant (verteilte Systeme)

Ebene Check
Firewall “ufw status’, iptables/nftables
Service lauft?| systemctl status <service>", Logs

Beispiel:

von api -> db Port testen
nc -vz 192.168.56.11

offene Ports ansehen
ss -tulpn

systemd Service priufen

systemctl status nginx --no-pager
journalctl -u nginx -n --no-pager

Grenzen & typische Stolpersteine

Provider-Probleme (VirtualBox/Hypervisor nicht aktiv, CPU-VT)
Port-Kollisionen (Host-Port 8080 ist schon belegt)

Netzwerk-Konflikte (Host-only Netz kollidiert mit bestehendem Netz)
Performance (VMs brauchen RAM/CPU - Multi-Node braucht Ressourcen)

Fur Klassen: Lieber kleine VMs (1 CPU / 1024-2048 MB) und ein , Minimal-Cluster” als zu
& viel auf einmal.

M319-LUO6, M319-C1E

8 Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lul0/vagrantl?rev=1769584329

Last update: 2026/01/28 08:12

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/tag/m319-lu06?do=showtag&tag=M319-LU06
https://wiki.bzz.ch/tag/m319-c1e?do=showtag&tag=M319-C1E
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant1?rev=1769584329

	LU10a - Multi-Node Lab mit Vagrant (verteilte Systeme)
	Übersicht
	Warum Vagrant im Modul „Verteilte Systeme“?
	Vagrant Architektur in der Praxis
	Wichtigste Befehle (Workflow)
	Netzwerk-Grundlagen (was du wirklich brauchst)
	NAT (Standard)
	Port Forwarding
	Private Network (Host-only / internes Netz)

	Beispiel: Multi-Node Setup (db / api / proxy)
	Vagrantfile (Beispiel)
	Starten und testen

	Synced Folders (Code teilen)
	Debugging-Grundmuster (sehr prüfungsrelevant)
	Grenzen & typische Stolpersteine

