
2026/02/03 20:42 1/5 LU10b - Multi-Node Lab mit Vagrant (verteilte Systeme)

BZZ - Modulwiki - https://wiki.bzz.ch/

LU10b - Multi-Node Lab mit Vagrant
(verteilte Systeme)

Ziel: Du kannst mit Vagrant eine reproduzierbare Multi-
VM-Umgebung (mehrere Nodes) definieren, starten,
vernetzen und verwalten – als Praxis-Setup für verteilte
Systeme.

Übersicht
Begriff Kurz erklärt

Vagrant Tool, um VM-Umgebungen als Code zu definieren (Vagrantfile) und
reproduzierbar zu starten.

VM (Virtual Machine) Komplettes virtuelles Betriebssystem (Kernel + Userspace) auf einem Host.
Provider VM-Backend, z.B. VirtualBox, VMware, Hyper-V (je nach System).
Box Vorgefertigtes VM-Image (Basis-OS), z.B. Ubuntu.

Provisioning Automatische Konfiguration nach dem Boot: Pakete installieren, Services
konfigurieren, Dateien kopieren…

Multi-Node Mehrere VMs als „Cluster“ (z.B. db/api/proxy) inkl. Netzwerk.

Warum Vagrant im Modul „Verteilte Systeme“?

In verteilten Systemen geht es selten nur um „einen Dienst auf einem Rechner“. Typische Themen
sind:

Mehrere Nodes (Dienste sind verteilt)
Netzwerk & Ports (Kommunikation zwischen Nodes)
Fehlersuche über Maschinen-Grenzen (Logs, Connectivity, Firewall)
Reproduzierbarkeit (alle Lernenden haben *dieselbe* Ausgangslage)

Vagrant liefert dir genau das: ein Vagrantfile → ein Befehl → identische Multi-VM-Umgebung.

Merke: Container sind „leicht“ und schnell – aber manchmal brauchst du das volle OS:
systemd, Kernel-nahe Tools, realistische Netzwerkkonfiguration, Legacy-Stacks. Dafür
sind VMs top.

Vagrant Architektur in der Praxis

Vagrant ist im Kern ein Orchestrator um diese Teile:

Last
update:
2026/01/28
08:23

en:modul:m321_aws:learningunits:lu10:vagrant1 https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant1?rev=1769584991

https://wiki.bzz.ch/ Printed on 2026/02/03 20:42

Vagrantfile: „Bauplan“ (Ruby-DSL, aber sehr lesbar)
Box: Basis-System (z.B. Ubuntu)
Provider: Virtualisierung (meist VirtualBox)
Communicator: Kommunikation in die VM (typisch SSH)
Synced Folders: Ordner zwischen Host und VM teilen
Networking: NAT, Port-Forwarding, private/public network
Provisioning: Shell/Ansible/etc. (kommt in LU10b)

Wichtigste Befehle (Workflow)

im Projektordner
vagrant init # Vagrantfile erstellen (Basis)
vagrant up # VMs starten/erstellen
vagrant status # Status ansehen
vagrant ssh <name> # in eine bestimmte VM einloggen
vagrant halt # sauber herunterfahren
vagrant reload # Neustart (Konfigänderungen übernehmen)
vagrant provision # Provisioning erneut ausführen
vagrant destroy -f # VMs löschen (Achtung: Daten weg)

Typischer Fehler: Änderungen am Vagrantfile werden oft erst nach reload oder destroy/up
vollständig wirksam (je nach Änderung).

Netzwerk-Grundlagen (was du wirklich brauchst)

In Multi-Node Labs sind diese Netzwerkarten zentral:

NAT (Standard)

VM kommt „raus ins Internet“
andere VMs erreichen sie nicht zuverlässig über NAT

Port Forwarding

Host-Port → VM-Port (z.B. localhost:8080 → VM:80)
gut für „Service im Browser testen“

Beispiel:

config.vm.network "forwarded_port", guest: 80, host: 8080

2026/02/03 20:42 3/5 LU10b - Multi-Node Lab mit Vagrant (verteilte Systeme)

BZZ - Modulwiki - https://wiki.bzz.ch/

Private Network (Host-only / internes Netz)

Jede VM bekommt eine fixe interne IP
VMs können sich direkt erreichen (perfekt für verteilte Systeme)

Beispiel:

config.vm.network "private_network", ip: "192.168.56.11"

Didaktik-Tipp: Für verteilte Systeme ist ein Private Network mit fixen IPs am
besten: reproduzierbar, einfach zu debuggen, klare Topologie.

Beispiel: Multi-Node Setup (db / api / proxy)

Die Idee:

db: Datenbank/Cache
api: Anwendung/Service
proxy: Reverse Proxy / Einstiegspunkt

Vagrantfile (Beispiel)

Vagrantfile
Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/jammy64"

 # Gemeinsame Defaults
 config.vm.provider "virtualbox" do |vb|
 vb.cpus = 2
 vb.memory = 2048
 end

 # --- db node ---
 config.vm.define "db" do |db|
 db.vm.hostname = "db"
 db.vm.network "private_network", ip: "192.168.56.11"
 # Optional: DB nach aussen testbar machen (nur falls nötig)
 # db.vm.network "forwarded_port", guest: 5432, host: 15432
 end

 # --- api node ---
 config.vm.define "api" do |api|
 api.vm.hostname = "api"
 api.vm.network "private_network", ip: "192.168.56.12"
 # api.vm.network "forwarded_port", guest: 8000, host: 18000

Last
update:
2026/01/28
08:23

en:modul:m321_aws:learningunits:lu10:vagrant1 https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant1?rev=1769584991

https://wiki.bzz.ch/ Printed on 2026/02/03 20:42

 end

 # --- proxy node ---
 config.vm.define "proxy" do |proxy|
 proxy.vm.hostname = "proxy"
 proxy.vm.network "private_network", ip: "192.168.56.13"
 # Reverse proxy nach aussen
 proxy.vm.network "forwarded_port", guest: 80, host: 8080
 end
end

Starten und testen

vagrant up

in die proxy VM
vagrant ssh proxy
ip a
ping -c 2 192.168.56.12 # api
ping -c 2 192.168.56.11 # db

Synced Folders (Code teilen)

Standardmässig wird der Projektordner oft nach `/vagrant` gemountet.

vagrant ssh api
ls -la /vagrant

Das ist praktisch, wenn du z.B. „api-code“ auf dem Host bearbeitest, aber in der VM laufen lässt.

Synced Folders können je nach OS/Provider Performance kosten. Für grosse Projekte: bewusst
einsetzen.

Debugging-Grundmuster (sehr prüfungsrelevant)

Wenn „verteiltes System“ nicht funktioniert, geh systematisch vor:

Ebene Check
DNS/Hosts Können die Nodes Namen auflösen? (oder IPs nutzen)
Routing/Netz Ping / traceroute / `ip a`, `ip r`
Port offen? `ss -tulpn`, `nc -vz <ip> <port>`

2026/02/03 20:42 5/5 LU10b - Multi-Node Lab mit Vagrant (verteilte Systeme)

BZZ - Modulwiki - https://wiki.bzz.ch/

Ebene Check
Firewall `ufw status`, iptables/nftables
Service läuft? `systemctl status <service>`, Logs

Beispiel:

von api -> db Port testen
nc -vz 192.168.56.11 5432

offene Ports ansehen
ss -tulpn

systemd Service prüfen
systemctl status nginx --no-pager
journalctl -u nginx -n 50 --no-pager

Grenzen & typische Stolpersteine

Provider-Probleme (VirtualBox/Hypervisor nicht aktiv, CPU-VT)
Port-Kollisionen (Host-Port 8080 ist schon belegt)
Netzwerk-Konflikte (Host-only Netz kollidiert mit bestehendem Netz)
Performance (VMs brauchen RAM/CPU – Multi-Node braucht Ressourcen)

Für Klassen: Lieber kleine VMs (1 CPU / 1024–2048 MB) und ein „Minimal-Cluster“ als zu
viel auf einmal.

M319-LU06, M319-C1E

 Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant1?rev=1769584991

Last update: 2026/01/28 08:23

https://wiki.bzz.ch/tag/m319-lu06?do=showtag&tag=M319-LU06
https://wiki.bzz.ch/tag/m319-c1e?do=showtag&tag=M319-C1E
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant1?rev=1769584991

	LU10b - Multi-Node Lab mit Vagrant (verteilte Systeme)
	Übersicht
	Warum Vagrant im Modul „Verteilte Systeme“?
	Vagrant Architektur in der Praxis
	Wichtigste Befehle (Workflow)
	Netzwerk-Grundlagen (was du wirklich brauchst)
	NAT (Standard)
	Port Forwarding
	Private Network (Host-only / internes Netz)

	Beispiel: Multi-Node Setup (db / api / proxy)
	Vagrantfile (Beispiel)
	Starten und testen

	Synced Folders (Code teilen)
	Debugging-Grundmuster (sehr prüfungsrelevant)
	Grenzen & typische Stolpersteine

