
2026/02/03 15:42 1/7 LU10c - Provisioning mit Ansible (idempotent konfigurieren)

BZZ - Modulwiki - https://wiki.bzz.ch/

LU10c - Provisioning mit Ansible (idempotent
konfigurieren)

Ziel: Du kannst Provisioning verstehen und anwenden: Du
konfigurierst VMs automatisiert mit Ansible (idempotent),
und du kannst Ansible-Provisioning sinnvoll von Shell-
Skripten und Dockerfiles abgrenzen.

Übersicht
Thema Kernaussage

Provisioning „Maschine nach dem Boot automatisch einrichten“ (Pakete, Konfig, Services,
Users, Files).

Shell Provisioner Schnell, aber oft „fragil“ (nicht idempotent, schwer wartbar).

Ansible Konfiguration als Code: deklarativ, idempotent, gut strukturierbar
(Rollen/Tasks).

Idempotenz „Mehrfach ausführen → gleicher Zustand, ohne Chaos“.
Handler „Nur bei Änderung Service neu starten/reload“.
Playbook Sammlung von Tasks, die auf Hosts angewendet werden.

Warum Provisioning?

Ohne Provisioning passiert das hier:

Jede:r installiert manuell Pakete
Jede:r vergisst etwas
Jede:r hat andere Versionen/Einstellungen
Debugging wird unfair („bei mir geht’s“)

Mit Provisioning:

Einmal definieren → immer reproduzierbar
Gleiche Ausgangslage für alle
Ideal für Multi-Node Labs

Merke: Vagrant erstellt VMs. Provisioning macht daraus „fertige Nodes“ für dein
verteiltes System.

Last
update:
2026/01/28
08:23

en:modul:m321_aws:learningunits:lu10:vagrant2 https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant2?rev=1769585000

https://wiki.bzz.ch/ Printed on 2026/02/03 15:42

Shell vs. Ansible (kurzer Vergleich)
Kriterium Shell-Skript Ansible
Lesbarkeit ok, aber schnell unübersichtlich sehr gut (Tasks/Module)
Wiederholbarkeit oft problematisch idempotent
Fehlerhandling selber bauen eingebaut (Return-Codes, Changed-Status)
Strukturierung eher „Script-Spaghetti“ Rollen, Variablen, Templates
Lerntransfer Script-Skills DevOps/IaC-Transfer sehr hoch

Kernkonzepte in Ansible

Inventory (Hosts-Liste)

Welche Maschinen gibt es und wie heissen sie?

Beispiel (klassisch):

[db]
192.168.56.11

[api]
192.168.56.12

[proxy]
192.168.56.13

Playbook

Ein YAML-Dokument, das beschreibt, was auf welchen Hosts passieren soll.

Task

Ein einzelner Schritt, z.B. „nginx installieren“.

Module

„Bausteine“ für typische Dinge: `apt`, `copy`, `template`, `service`, `user`, `lineinfile`…

Handler

Wird nur ausgelöst, wenn sich etwas ändert (z.B. Config geändert → nginx reload).

2026/02/03 15:42 3/7 LU10c - Provisioning mit Ansible (idempotent konfigurieren)

BZZ - Modulwiki - https://wiki.bzz.ch/

Idempotenz ist das Killer-Feature: Ein Playbook kann man „einfach nochmal laufen
lassen“, ohne alles kaputt zu machen.

Ansible in Vagrant einbinden

Es gibt zwei gängige Wege:

Variante A: ansible (Host-basiert)

Ansible läuft auf deinem Host
Vagrant übergibt die VM-Infos an Ansible
Vorteil: schnell, simpel (wenn Host Ansible hat)
Nachteil: Host muss Ansible installiert haben (Windows teils mühsam)

Variante B: ansible_local (Guest-basiert)

Ansible wird in der VM installiert und dort ausgeführt
Vorteil: host-unabhängiger, oft „klassen-tauglicher“
Nachteil: Playbook-Lauf ist minimal langsamer

In Klassen mit gemischten Betriebssystemen ist ansible_local oft robuster.

Beispiel-Projektstruktur

projekt/
├─ Vagrantfile
└─ provision/
 ├─ playbook.yml
 ├─ group_vars/
 │ ├─ all.yml
 └─ templates/
 └─ nginx.conf.j2

Beispiel: Vagrantfile mit ansible_local

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/jammy64"

Last
update:
2026/01/28
08:23

en:modul:m321_aws:learningunits:lu10:vagrant2 https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant2?rev=1769585000

https://wiki.bzz.ch/ Printed on 2026/02/03 15:42

 nodes = {
 "db" => "192.168.56.11",
 "api" => "192.168.56.12",
 "proxy" => "192.168.56.13"
 }

 nodes.each do |name, ip|
 config.vm.define name do |node|
 node.vm.hostname = name
 node.vm.network "private_network", ip: ip
 end
 end

 # Ansible läuft in der VM (ansible_local)
 config.vm.provision "ansible_local" do |ansible|
 ansible.playbook = "provision/playbook.yml"
 ansible.install = true
 end
end

Beispiel: Playbook (Basis + Rollen light)

Dieses Playbook zeigt typische Patterns:

Pakete installieren
/etc/hosts pflegen (damit Namen auflösbar sind)
nginx als Proxy konfigurieren
Services starten/aktivieren

provision/playbook.yml
- name: Multi-Node Setup fuer verteilte Systeme
 hosts: all
 become: true

 vars:
 cluster_hosts:
 - { name: "db", ip: "192.168.56.11" }
 - { name: "api", ip: "192.168.56.12" }
 - { name: "proxy", ip: "192.168.56.13" }

 tasks:
 - name: Pakete installieren (Basis)
 ansible.builtin.apt:
 name:
 - curl
 - ca-certificates
 - net-tools

2026/02/03 15:42 5/7 LU10c - Provisioning mit Ansible (idempotent konfigurieren)

BZZ - Modulwiki - https://wiki.bzz.ch/

 - python3
 - python3-pip
 update_cache: true
 state: present

 - name: /etc/hosts fuer Cluster-Namen pflegen
 ansible.builtin.lineinfile:
 path: /etc/hosts
 line: "{{ item.ip }} {{ item.name }}"
 state: present
 loop: "{{ cluster_hosts }}"

- name: Proxy Node konfigurieren
 hosts: proxy
 become: true

 tasks:
 - name: nginx installieren
 ansible.builtin.apt:
 name: nginx
 update_cache: true
 state: present

 - name: nginx config deployen
 ansible.builtin.template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/default
 notify: reload nginx

 - name: nginx aktivieren und starten
 ansible.builtin.service:
 name: nginx
 state: started
 enabled: true

 handlers:
 - name: reload nginx
 ansible.builtin.service:
 name: nginx
 state: reloaded

Beispiel: Nginx Template (Reverse Proxy)

provision/templates/nginx.conf.j2
server {
 listen 80;

 location / {
 proxy_pass http://api:8000;

http://wiki.nginx.org/NginxHttpCoreModule#server
http://wiki.nginx.org/NginxHttpCoreModule#listen
http://wiki.nginx.org/NginxHttpCoreModule#location
http://wiki.nginx.org/NginxHttpProxyModule#proxy_pass
http://wiki.nginx.org/NginxHttpCoreModule#http

Last
update:
2026/01/28
08:23

en:modul:m321_aws:learningunits:lu10:vagrant2 https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant2?rev=1769585000

https://wiki.bzz.ch/ Printed on 2026/02/03 15:42

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 }
}

Was hier wichtig ist: Der Proxy spricht api:8000 (Name, nicht IP). Das funktioniert,
weil wir via Ansible `/etc/hosts` gesetzt haben. (Später kann man das durch „echte“
Service Discovery ersetzen.)

Brücke zu Dockerfile / Docker-Compose
Konzept Docker-Welt VM/Ansible-Welt
Artefakt Image VM/Box + Provisioning
„Build“ Dockerfile → Image (optional) Packer → Image / oder Vagrant + Provisioning
Konfiguration ENV, COPY, RUN apt, template, service, systemd
Reproduzierbarkeit sehr hoch hoch (wenn idempotent)
Runtime Container VM

Wenn du Ansible sauber machst, lernen die Lernenden „Konfiguration als Code“ – das ist
in der Praxis extrem gefragt, egal ob VM, Cloud oder Kubernetes.

Debugging & Qualität

Playbook testen

in der VM (ansible_local) typischerweise:
sudo ansible-playbook /vagrant/provision/playbook.yml

mehr Details:
sudo ansible-playbook /vagrant/provision/playbook.yml -vv

Häufige Fehler

falscher Pfad zu Templates
Service heisst anders (z.B. nginx vs apache2)
Ports stimmen nicht (Proxy zeigt auf falschen Port)
Rechte fehlen → `become: true` vergessen

http://wiki.nginx.org/NginxHttpProxyModule#proxy_set_header
http://wiki.nginx.org/NginxHttpProxyModule#proxy_set_header

2026/02/03 15:42 7/7 LU10c - Provisioning mit Ansible (idempotent konfigurieren)

BZZ - Modulwiki - https://wiki.bzz.ch/

Profi-Pattern (optional)

check mode (trocken laufen lassen): `–check`
syntax check: `–syntax-check`
Variablen pro Umgebung (`group_vars`, `host_vars`)
Rollen (`roles/`) für saubere Wiederverwendung

M319-LU06, M319-C1E

 Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant2?rev=1769585000

Last update: 2026/01/28 08:23

https://wiki.bzz.ch/tag/m319-lu06?do=showtag&tag=M319-LU06
https://wiki.bzz.ch/tag/m319-c1e?do=showtag&tag=M319-C1E
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m321_aws/learningunits/lu10/vagrant2?rev=1769585000

	LU10c - Provisioning mit Ansible (idempotent konfigurieren)
	Übersicht
	Warum Provisioning?
	Shell vs. Ansible (kurzer Vergleich)
	Kernkonzepte in Ansible
	Inventory (Hosts-Liste)
	Playbook
	Task
	Module
	Handler

	Ansible in Vagrant einbinden
	Variante A: ansible (Host-basiert)
	Variante B: ansible_local (Guest-basiert)

	Beispiel-Projektstruktur
	Beispiel: Vagrantfile mit ansible_local
	Beispiel: Playbook (Basis + Rollen light)
	Beispiel: Nginx Template (Reverse Proxy)
	Brücke zu Dockerfile / Docker-Compose
	Debugging & Qualität
	Playbook testen
	Häufige Fehler
	Profi-Pattern (optional)

