2026/01/11 21:02 1/2 Imperative versus declarative commands

Imperative versus declarative commands

Until now, our examples were focused on quick and imperative commands by using kubectl
<command> i.e. to create deployments and services running on a one-node cluster with minikube.
This is convenient for something quick, but does not easily expose the full flexibility of the API. To
leverage all the options available via Kubernetes, it is often more effective to manage files that
describe the deployment you want.

When using these files, you can use kubectl <command> along with the -f option to specify the
file to use. Kubernetes offers a declarative mechanism as well, leveraging the kubectl apply
command, which takes in files, reviews the current state, and manages the updates—creating,
removing, and so on—as needed, while also keeping a simple audit log of the changes.

It's recommended using the declarative mechanism for anything more complex than running a single
process, which will likely be most of your developed services. You may not need the audit trails in
development. You probably would in a staging/canary environment or in production, so being familiar
and comfortable with them is advantageous to understand them.

Best of all, you can include declarative files in source control, treating them like code. This gives you a
consistent means of sharing that application structure among your team members, all of which can
use it to provide a consistent environment.

The kubectl apply command has an -R option as well that will recursively descend directories if
you are establishing a complex deployment.

What does declaration look like?

In most cases, the YAML format is used. The options and configurations can seem overwhelming.
Each resource in Kubernetes has its own format, and some of those formats are changing and under
active development. You will notice that some of the APIs and object structures will actively reference
either alpha (means it is an early experiment and the data format may change) or beta (means is
more solid than purely experimental, and can likely be used in production loads) to indicate the state
of maturity of those resources in the project.

A great help is to get the declaration from existing Kubernetes objects. When you request the
Kubernetes resource using the kubectl get command you can add the -o yaml —export option.

The -0 yaml option could instead be -0 json if you prefer that format. —export will strip out some
extraneous information that is specific to the current state and identity of the resource within
Kubernetes, and won't benefit you to store externally.

It's recommend using YAML as the format for these declarations. You could use JSON, but YAML allows
you to add comments into the declarations, which are immensely useful for others reading those files.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update: 2025/09/27 13:48 en:modul:m321_aws:topics:08 https://wiki.bzz.ch/en/modul/m321_aws/topics/08?rev=1758973699

Example Kubernetes Deployment (YAML)

As an example, containerized python app is used. The parameter
terminationGracePeriodSeconds is set to give your app enough time to finish work.

apiVersion: apps/vl
kind: Deployment

metadata:
name: my-python-app
spec:
replicas: 1
selector:
matchLabels:
app: my-python-app
template:
metadata:
labels:
app: my-python-app
spec:
terminationGracePeriodSeconds: 60
containers:
- name: app
image: your-image: latest
ports:
- containerPort: 8080
From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m321_aws/topics/08?rev=1758973699

Last update: 2025/09/27 13:48

https://wiki.bzz.ch/ Printed on 2026/01/11 21:02


https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m321_aws/topics/08?rev=1758973699

	[Imperative versus declarative commands]
	Imperative versus declarative commands
	What does declaration look like?
	Example Kubernetes Deployment (YAML)


