
2026/01/11 21:21 1/5 Imperative versus declarative commands

BZZ - Modulwiki - https://wiki.bzz.ch/

Imperative versus declarative commands

Until now, our examples were focused on quick and imperative commands by using kubectl
<command> i.e. to create deployments and services running on a one-node cluster with minikube.
This is convenient for something quick, but does not easily expose the full flexibility of the API. To
leverage all the options available via Kubernetes, it is often more effective to manage files that
describe the deployment you want.

When using these files, you can use kubectl <command> along with the -f option to specify the
file to use. Kubernetes offers a declarative mechanism as well, leveraging the kubectl apply
command, which takes in files, reviews the current state, and manages the updates—creating,
removing, and so on—as needed, while also keeping a simple audit log of the changes.

It's recommended using the declarative mechanism for anything more complex than running a single
process, which will likely be most of your developed services. You may not need the audit trails in
development. You probably would in a staging/canary environment or in production, so being familiar
and comfortable with them is advantageous to understand them.

Best of all, you can include declarative files in source control, treating them like code. This gives you a
consistent means of sharing that application structure among your team members, all of which can
use it to provide a consistent environment.

The kubectl apply command has an -R option as well that will recursively descend directories if
you are establishing a complex deployment.

What does declaration look like?

In most cases, the YAML format is used. The options and configurations can seem overwhelming.
Each resource in Kubernetes has its own format, and some of those formats are changing and under
active development. You will notice that some of the APIs and object structures will actively reference
either alpha (means it is an early experiment and the data format may change) or beta (means is
more solid than purely experimental, and can likely be used in production loads) to indicate the state
of maturity of those resources in the project.
A great help is to get the declaration from existing Kubernetes objects. When you request the
Kubernetes resource using the kubectl get command you can add the -o yaml –export option.

The -o yaml option could instead be -o json if you prefer that format. –export will strip out some
extraneous information that is specific to the current state and identity of the resource within
Kubernetes, and won't benefit you to store externally.

It's recommend using YAML as the format for these declarations. You could use JSON, but YAML allows
you to add comments into the declarations, which are immensely useful for others reading those files.

Last update: 2025/10/22 16:30 en:modul:m321_aws:topics:08 https://wiki.bzz.ch/en/modul/m321_aws/topics/08?rev=1761143431

https://wiki.bzz.ch/ Printed on 2026/01/11 21:21

Example 1: Deployment-Elements in YAML explained

apiVersion: apps/v1
kind: Deployment (1)
metadata:
 name: calculator-deployment (2)
 labels:
 app: calculator
spec:
 replicas: 3 (3)
 selector: (4)
 matchLabels:
 app: calculator
 template: (5)
 metadata:
 labels: (6)
 app: calculator
 spec:
 containers:
 - name: calculator (7)
 image: gcr.io/calculator (8)
 ports: (9)
 - containerPort: 8080

In this YAML configuration, we have to ensure the following:

We have defined a Kubernetes resource of the Deployment type from the apps/v1 Kubernetes1.
API version.
The unique deployment name is calculator-deployment.2.
We have defined that there should be exactly 3 of the same Pods created.3.
selector defines how Deployment finds Pods to manage, in this case, just by the label.4.
template defines the specification for each created Pod.5.
Each Pod is labeled with app: calculator.6.
Each Pod contains a Docker container named calculator.7.
A Docker container was created from the image called gcr.io/calculator.8.
The Pod exposes container port 8080.9.

To install the deployment, run the following command:

$ kubectl apply -f deployment.yaml

You can check that the three Pods, each containing one Docker container, have been created:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
calculator-deployment-dccdf8756-h2l6c 1/1 Running 0 1m
calculator-deployment-dccdf8756-tgw48 1/1 Running 0 1m
calculator-deployment-dccdf8756-vtwjz 1/1 Running 0 1m

Each Pod runs a Docker container. We can check its logs by using the following command:

2026/01/11 21:21 3/5 Imperative versus declarative commands

BZZ - Modulwiki - https://wiki.bzz.ch/

$ kubectl logs pods/calculator-deployment-dccdf8756-h2l6c

Example 2: Kubernetes Deployment (YAML)

As an example, containerized python app is used. The parameter
terminationGracePeriodSeconds is set to give your app enough time to finish work.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-python-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: my-python-app
 template:
 metadata:
 labels:
 app: my-python-app
 spec:
 terminationGracePeriodSeconds: 60
 containers:
 - name: app
 image: your-image:latest
 ports:
 - containerPort: 8080

Example 3: Kubernetes Deployment + Service (YAML)

The previous example declared only the deployment. In this example, we add the corresponding
service.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-python-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: my-python-app
 template:
 metadata:

Last update: 2025/10/22 16:30 en:modul:m321_aws:topics:08 https://wiki.bzz.ch/en/modul/m321_aws/topics/08?rev=1761143431

https://wiki.bzz.ch/ Printed on 2026/01/11 21:21

 labels:
 app: my-python-app
 spec:
 terminationGracePeriodSeconds: 60
 containers:
 - name: app
 image: your-image:latest
 ports:
 - containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 name: my-python-service
spec:
 selector:
 app: my-python-app
 ports:
 - port: 8080
 targetPort: 8080
 type: ClusterIP

Service types

As a recapture on how your application can be accessed from the outside, we need to start with the
types of Kubernetes Services. You can use four different service types, as follows:

ClusterIP (default): The service has an internal IP only.
NodePort: Exposes the service on the same port of each cluster node. In other words, each
physical machine (which is a Kubernetes node) opens a port that is forwarded to the service.
Then, you can access it by using <NODE-IP>:<NODE-PORT>.
LoadBalancer: Creates an external load balancer and assigns a separate external IP for the
service. Your Kubernetes cluster must support external load balancers, which works fine in the
case of cloud platforms, but may not work if you use minikube.
ExternalName: Exposes the service using a DNS name (specified by externalName in the
spec).

While LoadBalancer seems to be the simplest solution, it has two drawbacks:

It's not always available, for example, if you deployed on-premises Kubernetes or used
minikube.
External public IPs are usually expensive. A different solution is to use a NodePort service.

$ kubectl get service my-python-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-python-service NodePort 10.19.248.154 <none> 8080:32259/TCP 13m

2026/01/11 21:21 5/5 Imperative versus declarative commands

BZZ - Modulwiki - https://wiki.bzz.ch/

You can see that port 32259 was selected as a node port. This means that we can access our my-
python-service service using that port and the IP of any of the Kubernetes nodes.

The IP address of your Kubernetes node depends on your installation. In the case of minikube, you
can check it with the minikube ip command:

$ kubectl get nodes -o jsonpath='{
$.items[*].status.addresses[?(@.type=="ExternalIP")].address }'
35.192.180.252 35.232.125.195 104.198.131.248

To check that you can access my-python-service from the outside, run the following command:

$ curl http://<NODE-IP>:32047/

Based on „Kubernetes for Developers by Joseph Heck“

 Daniel Garavaldi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m321_aws/topics/08?rev=1761143431

Last update: 2025/10/22 16:30

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m321_aws/topics/08?rev=1761143431

	[Imperative versus declarative commands]
	Imperative versus declarative commands
	What does declaration look like?
	Example 1: Deployment-Elements in YAML explained
	Example 2: Kubernetes Deployment (YAML)
	Example 3: Kubernetes Deployment + Service (YAML)

	Service types

