2026/02/03 16:37 1/3 LU03.A10 - Timer and API call

LUO3.A10 - Timer and API call

In this exercise you will experience the power of asynchrony in Python. Your task is to create an
asynchronous timer that executes an API call every 3 seconds. At the same time, a separate
asynchronous process should perform another task without being interrupted by the API call.

Detailed task

API call: Your programme should make an asynchronous call to the following URL every 3 seconds:
https://run.mocky.io/v3/685db531-06e7-4d66-bbf6-99de9f2feab3?mocky-delay=3000ms . Once a
response has been received from the server, this should be displayed in the console.

Second task: Parallel to the API call, your programme should perform another asynchronous task.
This task should consist of outputting a number every second that is constantly incremented by 1 (an
asynchronous timer).

Note: Use asyncio in combination with a library such as httpx for asynchronous HTTP requests.

Expected behaviour

When you run your programme, you should see the timer count up every second. Every 3 seconds
your programme will pause to wait for the API call response. After the response is received, it will be
displayed in the console and the timer will continue without interruption.

Example

A possible output could look like this:

PI Response: <Response [200 OK]>

A >WNNRFR O

Template

asyncio
httpx

api response callback(response data):

BZZ - Modulwiki - https://wiki.bzz.ch/


https://run.mocky.io/v3/685db531-06e7-4d66-bbf6-99de9f2feab3?mocky-delay=3000ms

Last update: . . . . Lo ) - T . . .
2024/09/11 15:34 en:modul:m323:learningunits:lu03:aufgaben:timer https://wiki.bzz.ch/en/modul/m323/learningunits/lu03/aufgaben/timer

Callback-Funktion, die aufgerufen wird, nachdem die API-Antwort
empfangen wurde.

Args:
- response data: Die Daten, die von der API empfangen wurden.

Returns:
- None, da die Daten direkt in der Konsole ausgegeben werden.

#TODO: Hier die Daten verarbeiten

async def fetch data from api(callback):

Diese Funktion ruft asynchron alle 3 Sekunden eine API
("https://run.mocky.io/v3/685db531-06e7-4d66-bbf6-99de9f2feab3?mocky-delay=3
000ms') auf, die eine

Verzogerung von 3 Sekunden simuliert. Nachdem die Daten von der API
abgerufen wurden, wird der bereitgestellte

Callback mit den Daten aufgerufen.

Args:
- callback: Die Callback-Funktion, die aufgerufen wird, nachdem die API-
Daten empfangen wurden.

Returns:
- None, da die Daten an die Callback-Funktion weitergegeben werden.

# TODO: Hier in einer Endlosschleife die API aufrufen und die Daten an
die Callback-Funktion lbergeben

async def async_timer():

Diese Funktion fungiert als asynchroner Timer, der jede Sekunde
hochzahlt und den aktuellen Wert ausgibt.

Sie verwendet "asyncio.sleep  filir die Verzégerung und fihrt eine endlose
Schleife aus, die den Zahler jede Sekunde erhdht.

Returns:
- None, da der Zahlerstand direkt in der Konsole ausgegeben wird.

#T0DO: Hier den Timer implementieren

async def main():

Hauptfunktion, die beide asynchrone Funktionen, "“fetch data from api’
und “async timer , parallel ausfihrt.

Sie verwendet “asyncio.create task’ um die beiden Funktionen als

https://wiki.bzz.ch/ Printed on 2026/02/03 16:37



2026/02/03 16:37 3/3 LU03.A10 - Timer and API call

separate, gleichzeitig laufende Tasks zu starten.

Returns:
- None, da alle Ausgaben direkt in den jeweiligen Funktionen erfolgen.

api_task
asyncio.create task(fetch data from api(api response callback
timer task = asyncio.create task(async timer

await api_ task
await timer task

__hame ' main_ ':
asyncio.run(main

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m323/learningunits/lu03/aufgaben/timer

Last update: 2024/09/11 15:34

BZZ - Modulwiki - https://wiki.bzz.ch/


https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m323/learningunits/lu03/aufgaben/timer

	LU03.A10 - Timer and API call
	Detailed task
	Expected behaviour
	Example
	Template


