2025/10/15 22:30

1/6

Jenkins architecture

Jenkins architecture

Internal reference: topics/02-2.md

Master and agents

Jenkins server (master) delegates builds and execution tasks to agent (slave) instances.

l HTTP

Jenkins Master

TCP/IP

TCPIP

TCP/P

Jenkins Agent

Executor 1

Executor 2

Jenkins Agent

Jenkins controller (master) is responsible for the following:

Receiving build triggers (for example, after a commit to GitHub)
Sending notifications (for example, email or Slack messages sent after a build failure)
Handling HTTP requests (interaction with clients)
Managing the build environment (orchestrating the job executions on agents)

The build agent is a machine that takes care of everything that happens after the build has started.

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/en/modul/m324_aws/topics/02_01-jk-master-agent.jpg?id=en%3Amodul%3Am324_aws%3Atopics%3A03

Last update: 2025/10/15 13:32 en:modul:m324_aws:topics:03 https://wiki.bzz.ch/en/modul/m324_aws/topics/03

Scalability

When Jenkins instance become overloaded or unresponsive you can scaling it up, either vertical or
horizontal.

Vertical scaling

Vertical scaling means that more resources (more RAM, CPU cores, HDD drives etc.) are applied to a
machine. For example: having a single Jenkins master set on ultra-efficient hardware is a
maintenance advantage. Any upgrades, scripts, security settings, role assignments, or plugin
installations have to be done in one place only.

Horizontal scaling

Horizontal scaling means that more master instances are launched with some significant advantages:

e Master machines don't need to be special, in terms of hardware.

Different teams can have different Jenkins settings (for example, different sets of plugins).
Teams usually feel better and work with Jenkins more efficiently if the instance is their own.
If one master instance is down, it does not impact the whole organization.

e The infrastructure can be segregated into standard and mission-critical.

Test and production instances

How to test the Jenkins upgrades, new plugins, or pipeline definitions? Jenkins is critical to the whole
company. It guarantees the quality of the software and, in the case of continuous delivery, deploys to
the production servers. That is why it needs to be highly available, and it is definitely not for the
purpose of testing. It means there should always be two instances of the same Jenkins infrastructure -
test and production.

Sample architecture

We already know that there should be agents and (possibly multiple) masters and that everything
should be duplicated in the test and production environments. However, what would the complete
picture look like? Let's look at the example of Netflix:

https://wiki.bzz.ch/ Printed on 2025/10/15 22:30

2025/10/15 22:30 3/6

Jenkins architecture

Build Agent Group

Build Master

Ad-hoc Agents

(4 core / 32GB)

Custom Agent Groups

Test Master

Ad-hoc Agents

(4 core / 32GB)

Test Agent Group

AWS

Netflix

They have test and production master instances, with each of them owning a pool of agents and
additional ad hoc agents. Altogether, it serves around 2,000 builds per day. One part of their
infrastructure is hosted on AWS and another part is on their own servers.

Setting agents (slave)

Agents always communicate with the Jenkins master using one of the protocols: SSH (sshd) or Java
web start. At a higher level, we can attach agents to the master in various ways:

e Static versus dynamic: The simplest option is to add agents permanently in
the Jenkins master. The drawback of such a solution is that we always need to manually change
something if we need more (or fewer) agent nodes. A better option is to dynamically provision

agents as they are needed.

e Specific versus general-purpose: Agents can be specific (for example,
different agents for the projects based on Java 8 and Java 11) or general-purpose (an agent acts
as a Docker host and a pipeline is built inside a Docker container).

These differences resulted in four common strategies for how agents are configured:

¢ Permanent agents

e Permanent Docker host agents

e Jenkins Swarm agents

e Dynamically provisioned Docker agents (focus)
e Dynamically provisioned Kubernetes agents

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/en/modul/m324_aws/topics/02_02-jk-example.jpg?id=en%3Amodul%3Am324_aws%3Atopics%3A03

Last update: 2025/10/15 13:32 en:modul:m324_aws:topics:03 https://wiki.bzz.ch/en/modul/m324_aws/topics/03

Let's focus on one strategy. Other strategies can be dived in - here.

Dynamically provisioned Docker agents

Another option is to set up Jenkins to dynamically create a new agent each time a build is started.
Such a solution is obviously the most flexible one, since the number of agents dynamically adjusts to
the number of builds.

Docker Host

Docker agent mechanism used step by step:

1. When the Jenkins job is started, the master runs a new container from the jenkins/agent
image on the agent Docker host.

2. The jenkins/agent container starts the Jenkins agent and attaches it to the Jenkins master's
nodes pool.

3. Jenkins executes the pipeline inside the jenkins/agent container.

After the build, the master stops and removes the agent container. Information

Running the Jenkins master as a Docker container is independent of running Jenkins agents as Docker
containers. It's reasonable to do both, but any of them will work separately.

Custom Jenkins images So far, we have used Jenkins images pulled from the internet. We used
jenkins/jenkins for the master container and jenkins/agent (or jenkins/inbound-agent or jenkins/ssh-
agent) for the agent container. However, you may want to build your own images to satisfy the
specific build environment requirements. In this section, we will cover how to do it.

https://wiki.bzz.ch/ Printed on 2025/10/15 22:30

https://www.jenkins.io/doc/book/using/using-agents/
https://wiki.bzz.ch/_detail/en/modul/m324_aws/topics/02_03-jk-dyn-docker-agents.jpg?id=en%3Amodul%3Am324_aws%3Atopics%3A03

2025/10/15 22:30 5/6 Jenkins architecture

Custom Jenkins images

Jenkins images can be pulled from the internet

e jenkins/jenkins for the master container
e jenkins/agent (or jenkins/inbound-agent or jenkins/ssh-agent) for the agent container.

However, you may want to build your own images to satisfy the specific build environment
requirements.

Building a custom Jenkins agent

Let's start with the agent image because it's more frequently customized. The build execution is
performed on the agent, so it's the agent that needs to have the environment adjusted to the project
we want to build - for example, it may require the Python interpreter if our project is written in
Python. The same applies to any library, tool, or testing framework, or anything that is needed by the
project.

There are four steps to building and using the custom image:

1. Create a Docker file.

2. Build the image.

3. Push the image into a registry.

4. Change the agent configuration on the master.

Building the Jenkins master

Why would we also want to build our own master image? Imagine the following scenario: your
organization scales Jenkins horizontally, and each team has its own instance. There is, however, some
common configuration - for example, a set of base plugins, backup strategies, or the company logo.
Then, repeating the same configuration for each of the teams is a waste of time. So, we can prepare
the shared master image and let the teams use it. Jenkins is natively configured using XML files,
and it provides the Groovy-based DSL language to manipulate them. That is why we can add the
Groovy script to the Dockerfile in order to manipulate the Jenkins configuration. All possibilities are
well described on the - GitHub-Page.

Based on the book: , Continuous Delivery with Docker and Jenkins, 3rd Edition - Third Edition By
Leszko"

Daniel Garavaldi

BZZ - Modulwiki - https://wiki.bzz.ch/

https://github.com/jenkinsci/docker
https://creativecommons.org/licenses/by-nc-sa/4.0/

Last update: 2025/10/15 13:32 en:modul:m324_aws:topics:03 https://wiki.bzz.ch/en/modul/m324_aws/topics/03

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m324_aws/topics/03

Last update: 2025/10/15 13:32

https://wiki.bzz.ch/ Printed on 2025/10/15 22:30

https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m324_aws/topics/03

	[Jenkins architecture]
	Jenkins architecture
	Master and agents
	Scalability
	Vertical scaling
	Horizontal scaling

	Test and production instances
	Sample architecture
	Setting agents (slave)
	Dynamically provisioned Docker agents

	Custom Jenkins images
	Building a custom Jenkins agent
	Building the Jenkins master

