2025/10/15 22:30 1/3 Introduction to Jenkins pipeline

Introduction to Jenkins pipeline

Internal reference: topics/03-1.md

Introduction

A pipeline is a sequence of automated operations that usually represents a part of the software
delivery and quality assurance process. It can be seen as a chain of scripts that provide the following
additional benefits:

e Operation grouping: Operations are grouped together into stages (also known as gates or
quality gates) that introduce a structure into a process and clearly define a rule - if one stage
fails, no further stages are executed.

e Visibility: All aspects of a process are visualized, which helps in quick failure analysis and
promotes team collaboration.

e Feedback: Team members learn about problems as soon as they occur so that they can react
quickly

The pipeline structure

A Jenkins pipeline consists of two kinds of elements - a stage and a step. The following diagram shows
how they are used:

Pipeline

The following are the basic pipeline elements:

Step: A single operation that tells Jenkins what to do - for example, check out code from the
repository and execute a script Stage: A logical separation of steps that groups conceptually distinct
sequences of steps - for example, build, test, and deploy, used to visualize the Jenkins pipeline
progressinformationTechnically, it's possible to create parallel steps; however, it's better to treat

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/_detail/en/modul/m324_aws/topics/02_01.png?id=en%3Amodul%3Am324_aws%3Atopics%3A04

Last update: 2025/10/15 13:33 en:modul:m324_aws:topics:04 https://wiki.bzz.ch/en/modul/m324_aws/topics/04

them as an exception that is only used for optimization purposes.

A multi-stage Hello World

As an example, let's extend the Hello World pipeline to contain two stages:

<code> pipeline {

agent any
stages {
stage('First Stage') {
steps {
echo 'Step -Hello World'
}
}
stage('Second Stage') {
steps {
echo 'Step -Second time Hello'
echo 'Step -Third time Hello'
}
}
}

}

<code> The pipeline has no special requirements in terms of environment, and it executes three
steps inside two stages. When we click on Build Now, we should see a visual representation:

First Stage Second Stage
Average stage times: 108ms 45ms
(Average full run time: ~429ms) S S
Dec 15 No
° Changes 108ms 45ms
10:05

The pipeline succeeded, and we can see the step execution details by clicking on the console. If any
of the steps failed, processing would stop, and no further steps would run. Actually, the sole reason
for a pipeline is to prevent all further steps from execution and visualize the point of failure.

Based on the book: ,,Continuous Delivery with Docker and Jenkins, 3rd Edition - Third Edition By
Leszko”

https://wiki.bzz.ch/ Printed on 2025/10/15 22:30


https://wiki.bzz.ch/_detail/en/modul/m324_aws/topics/02_02.png?id=en%3Amodul%3Am324_aws%3Atopics%3A04

2025/10/15 22:30 3/3 Introduction to Jenkins pipeline

8 Daniel Garavaldi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m324_aws/topics/04

Last update: 2025/10/15 13:33

BZZ - Modulwiki - https://wiki.bzz.ch/


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m324_aws/topics/04

	[Introduction to Jenkins pipeline]
	Introduction to Jenkins pipeline
	Introduction
	The pipeline structure
	A multi-stage Hello World




