
2025/10/16 09:29 1/3 Jenkins' Pipeline syntax

BZZ - Modulwiki - https://wiki.bzz.ch/

Jenkins' Pipeline syntax

Pipeline syntax

In this course we use the declarative syntax that is recommended for all new projects. The other
options are a Groovy-based DSL and XML (created through the web interface). The declarative syntax
was designed to make it as simple as possible to understand the pipeline, even by people who do not
write code on a daily basis. This is why the syntax is limited only to the most important keywords.

Let's try an example and read the comments carefully:

pipeline {
 //Uses any available agent
 agent any
 //Triggers every 15 minutes * see more
https://linuxhandbook.com/crontab/
 triggers { cron('H/15 * * * *') }
 //Stops if the execution takes more than 5 minutes
 options { timeout(time: 5) }
 //Asks for the Boolean input parameter before starting
 parameters {
 booleanParam(name: 'DEBUG_BUILD', defaultValue: true,
 description: 'Is it the debug build?')
 }
 stages {
 stage('Example') {
 //Sets Node-Backend as the NAME environment variable
 environment { NAME = 'Node-Backend' }
 when { expression { return params.DEBUG_BUILD } }
 steps {
 echo Building $NAME
 script {
 def browsers = ['chrome', 'firefox']
 for (int i = 0; i < browsers.size(); ++i) {
 echo Testing the ${browsers[i]} browser.
 }
 }
 }
 }
 }
 post { always { echo 'I will always say Hello again!' } }
}

Last update: 2025/10/15 12:46 en:modul:m324_aws:topics:05 https://wiki.bzz.ch/en/modul/m324_aws/topics/05?rev=1760525202

https://wiki.bzz.ch/ Printed on 2025/10/16 09:29

What are Sections?

Sections define the pipeline structure and usually contain one or more directives or steps. They are
defined with the following keywords:

Stages: This defines a series of one or more stage directives.
Steps: This defines a series of one or more step instructions.
Post: This defines a series of one or more step instructions that are run at the end of the
pipeline build; they are marked with a condition (i.e. always, success, or failure) and are usually
used to send notifications after the pipeline build.
Agent: This specifies where the execution takes place and can define label to match the
equally labeled agents, or docker to specify a container that is dynamically provisioned to
provide an environment for the pipeline execution.

What are Directives?

Directives express the configuration of a pipeline or its parts:

Triggers: This defines automated ways to trigger the pipeline and can use cron to set the
time-based scheduling.
Options: This specifies pipeline-specific options – for example, timeout (the maximum time of
a pipeline run) or retry (the number of times the pipeline should be rerun after failure).
Environment: This defines a set of key values used as environment variables during the build.
Parameters: This defines a list of user-input parameters.
Stage: This allows for the logical grouping of steps.
When: This determines whether the stage should be executed, depending on the given
condition.
Tools: This defines the tools to install and put on PATH.
Input: This allows us to prompt the input parameters.
Parallel: This allows us to specify stages that are run in parallel.
Matrix: This allows us to specify combinations of parameters for which the given stages run in
parallel.

What are Steps?

Steps are the most fundamental part of the pipeline. They define the operations that are executed, so
they actually tell Jenkins what to do:

sh: This executes the shell command; actually, it's possible to define almost any operation
using sh.
custom: Jenkins offers a lot of operations that can be used as steps (for example, echo); many
of them are simply wrappers over the sh command used for convenience. Plugins can also
define their own operations.
script: This executes a block of Groovy-based code that can be used for some non-trivial
scenarios where flow control is needed.

2025/10/16 09:29 3/3 Jenkins' Pipeline syntax

BZZ - Modulwiki - https://wiki.bzz.ch/

The complete specification of the available steps can be found at → here.

Based on the book: „Continuous Delivery with Docker and Jenkins, 3rd Edition - Third Edition By
Leszko“

 Daniel Garavaldi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m324_aws/topics/05?rev=1760525202

Last update: 2025/10/15 12:46

https://jenkins.io/doc/pipeline/steps/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m324_aws/topics/05?rev=1760525202

	[Jenkins' Pipeline syntax]
	Jenkins' Pipeline syntax
	Pipeline syntax
	What are Sections?
	What are Directives?
	What are Steps?

