2026/02/09 22:10 1/2 Jenkins' Commit Pipeline

Jenkins' Commit Pipeline

Internal reference: topics/03-3.md

Introduction

The most basic continuous integration process is called a commit pipeline. This classic phase, as its
name indicates, starts with commit (or push in Git) to the main repository and results in a report
about the build success or failure. Since it runs after each change in the code, the build should take
no more than 5 minutes and should consume a reasonable amount of resources. The commit phase is
always the starting point of the continuous delivery process and provides the most important
feedback cycle in the development process - constant information if the code is in a healthy state.

The commit phase works as follows: a developer checks in the code to the repository, the continuous
integration server detects the change, and the build starts. The most fundamental commit pipeline
contains three stages:

e Checkout: This stage downloads the source code from the repository.
e Compile: This stage compiles the source code.
e Unit test: This stage runs a suite of unit tests.

Jenkins file

So far, we've created all the pipeline code directly in Jenkins. This is, however, not the only option. We
can also put the pipeline definition inside a file called Jenkins file and commit it to the repository,
together with the source code. This method is even more consistent because the way your pipeline
looks is strictly related to the project itself.

For example, if you don't need the code compilation because your programming language is
interpreted (and not compiled), you won't have the Compile stage. The tools you use also differ,
depending on the environment. We are going to use Node. js. However, in the case of a project
written in Python, you can use PyBuilder. This leads to the idea that the pipelines should be created
by the same people who write the code - the developers. Also, the pipeline definition should be put
together with the code, in the repository.

This approach brings immediate benefits, as follows:

¢ In the case of a Jenkins failure, the pipeline definition is not lost (because it's stored in the code
repository, not in Jenkins).

e The history of the pipeline changes is stored.

e Pipeline changes go through the standard code development process (for example, they are
subjected to code reviews).

e Access to the pipeline changes is restricted in exactly the same way as access to the source
code.

Let's see how it all looks in practice by creating a Jenkins file.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update: 2025/10/15 13:33 en:modul:m324_aws:topics:06 https://wiki.bzz.ch/en/modul/m324_aws/topics/06?rev=1760528021

Creating the Jenkins file

We can create the Jenkins file and push it into our Repository. Its content is almost the same as the
commit pipeline we wrote. The only difference is that the checkout stage becomes redundant because
Jenkins has to first check out the code (together with Jenkins file) and then read the pipeline structure
(from Jenkins file). This is why Jenkins needs to know the repository address before it reads Jenkins
file.

(]

Based on the book: ,,Continuous Delivery with Docker and Jenkins, 3rd Edition - Third Edition By
Leszko”

8 Daniel Garavaldi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m324_aws/topics/06?rev=1760528021

Last update: 2025/10/15 13:33

https://wiki.bzz.ch/ Printed on 2026/02/09 22:10


https://wiki.bzz.ch/_detail/en/modul/m324_aws/topics/02_03.png?id=en%3Amodul%3Am324_aws%3Atopics%3A06
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m324_aws/topics/06?rev=1760528021

	[Jenkins' Commit Pipeline]
	Jenkins' Commit Pipeline
	Introduction
	Jenkins file
	Creating the Jenkins file




