
2026/02/09 10:08 1/4 Code coverage with SonarQube

BZZ - Modulwiki - https://wiki.bzz.ch/

Code coverage with SonarQube

Internal reference: topics/06-3.md

Introduction

SonarQube is a Java-based open-source code coverage tool. Beside running code coverage, it allows
static code analysis to evaluate the reliability and security of a program. With SonarQube,
development teams may use fully customizable reports and a dashboard to show the quality of the
code in their apps.

This program can analyze the static code of more than 25 languages, including PHP: Hypertext
Preprocessor (PHP), Java,.NET, JavaScript, Python, and others. For a complete list, go to the
SonarQube docs.

SonarQube also provides code analysis for security issues, code smells, and code duplication, as well
as code coverage for unit tests.

Constraints of SonarQube

As a reminder: Test coverage statistics and test execution reports will show you how much of your
code is covered by your test cases.

SonarQube cannot determine coverage by itself. Set up of a third-party coverage tool is therefore
required in order to import data into SonarQube. The right SonarScanner configuration is required in
order to integrate code analysis into your build procedure.

Getting started

The following procedure describes steps to set up SonarQube code coverage using JavaScript As
prerequisites you should have the following components installed on your system:

NodeJS
Docker
A text editor or IDE

Step 1: Download and start SonarQube

SonarQube must be run on servers or virtual machines because it is an on-premise solution (VMs).
Without having to explicitly configure the server on your system, starting up an instance can be

Last update: 2026/01/07 14:24 en:modul:m324_aws:topics:11 https://wiki.bzz.ch/en/modul/m324_aws/topics/11?rev=1767792257

https://wiki.bzz.ch/ Printed on 2026/02/09 10:08

replaced by installing a Docker container from the Sonar image.

docker pull sonarqube:latest
docker run -d --name sonarqube -p 9000:9000 sonarqube:latest

Once your instance is up and running, you can log in and access the sonarqube instance from your
local browser through http://localhost:9000 using System Administrator default credentials.

login: admin
password: admin

Step 2: Create a new project

As Project type select Create a local Project
Then set Project display name and key and the main branch name (default:
main).
Hit the button Next
Select Follows the instance's default
Hit the button Create project

Step 3: Analysis method

As analysis method select Locally
Generate the Token name (Expiration in 30 days is ok)
Save the generated token and handle it as password.
Hit the button Continue
Run analysis on your project: Other → Linux

Step 4: Download and unzip the scanner

Download the scanner for your platform.
Unzip it either in your project directory or in your binary-directory.

Example for Linux on AWS EC2

wget -N
https://binaries.sonarsource.com/<whatever-path>/sonar-scanner-cli-<whatever
-version>-linux-x64.zip
sudo apt install unzip
unzip -o sonar-scanner-cli-<whatever-version>-linux-x64.zip

Add the bin directory of the unzipped folder in your PATH variable.

2026/02/09 10:08 3/4 Code coverage with SonarQube

BZZ - Modulwiki - https://wiki.bzz.ch/

Check before running code coverage that your target app (i.e. traffic light api) has the following
node package are installed.

dependencies: {
 ...
 @types/jest: ^29.5.11,
 jest: ^29.7.0,
 jest-sonar-reporter: ^2.0.0,
 sonarqube-scanner: ^4.2.6,
 supertest: ^6.3.3
}

Create in your project folder a file sonar-project.properties. Here you can store your
settings, especially project-key, source-path, SonarQube host url and token. In the example the
code source is in directory src and unit tests are on the same directory level in directory
tests.

#SonarQube configuration for server connection
sonar.projectKey=??
sonar.host.url=http://localhost:9000
sonar.token=??
sonar.sources=??
sonar.exclusions=
sonar.test=tests
sonar.language=javascript
sonar.scm.disabled=true
sonar.test.inclusions=tests/*.test.js
sonar.javascript.coveragePlugin=lcov
sonar.javascript.lcov.reportPaths=./coverage/lcov.info
sonar.testExecutionReportPaths=./coverage/test-reporter.xml
sonar.sourceEnconding=UTF-8

Step 5: Run the tests

Run first the code coverage with jest.

jest --coverage --coverageDirectory='coverage' --
collectCoverageFrom='src/**/*.js'

Execute the scanner as shown.

In the example the scanner binaries are stored in the project folder. The path to the scanner is used in
a bash script.

#!/usr/bin/env bash
#
set tool variable
tool=??/M324_Code/sonar-scanner/bin/sonar-scanner.bat
run tool

Last update: 2026/01/07 14:24 en:modul:m324_aws:topics:11 https://wiki.bzz.ch/en/modul/m324_aws/topics/11?rev=1767792257

https://wiki.bzz.ch/ Printed on 2026/02/09 10:08

$tool

Analyse the generated report in SonarQube

—

Based on this Article.

 Daniel Garavaldi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/en/modul/m324_aws/topics/11?rev=1767792257

Last update: 2026/01/07 14:24

https://www.aviator.co/blog/implementing-sonarqube-code-coverage-in-a-simple-javascript-application/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/en/modul/m324_aws/topics/11?rev=1767792257

	[Code coverage with SonarQube]
	Code coverage with SonarQube
	Introduction
	Constraints of SonarQube
	Getting started
	Step 1: Download and start SonarQube
	Step 2: Create a new project
	Step 3: Analysis method
	Step 4: Download and unzip the scanner
	Step 5: Run the tests

