
2026/01/19 01:38 1/9 LU07b - Vom eigenen Datentyp zur Klasse

BZZ - Modulwiki - https://wiki.bzz.ch/

LU07b - Vom eignen Datentyp zur Klasse

Repetition eigene Datentypen

Wir kennen bereits die eigenen Datentypen. Unsere eigenen Datentypen haben einen Namen und
haben eigene Attribute/Eigenschaften.

Der eigene Datentyp Clubmitglied weist z.B. die folgenden Attribute auf

Attribute UML
Name, Vorname, Adresse, Ort: String
Postleitzahl, Eintrittsjahr, Geburtsjahr: int
Ehrenmitglied: boolean

In Java sieht dieser Datentyp wie folgt aus:

public class Clubmitglied {
 String name;
 String vorname;
 String strasse;
 int hausnummer;
 String ort;
 int postleitzahl;
 int eintrittsjahr;
 int geburtsjahr;
 boolean ehrenmitglied;
}

Eigene Datentypen zu Klassen umbauen

Defaultkonstruktor

In einer Klasse ist der Java Konstruktor eine Methode, die den gleichen Namen wie die Klasse hat. Sie
wird dazu verwendet, ein neues Objekt dieser einen Klasse zu erstellen. Das ist der Grund, weshalb
jede Klasseninstanz einen Konstruktor haben muss.

Programmierst du den Defaultkonstruktor nicht selbst, so
erstellt der Compiler des Programms Java automatisch einen
sogenannten Defaultkonstruktor. Dabei ist die Methode ohne
Parameter und hat keinen Inhalt. Ebenfalls kannst du den
speziellen Konstruktor nicht sehen, da er nur im Hintergrund

https://wiki.bzz.ch/_detail/modul/m319/learningunits/lu05/uml_clubmitglied.png?id=modul%3Aarchiv%3Am319%3Alearningunits%3Alu07%3Alu07b-eigenerdatentypzuklasse
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
2024/03/28
14:07

modul:archiv:m319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

abläuft.

Der Defaultkonstruktor für die Klasse Clubmitglied würde folgendermassen aussehen:

public class Clubmitglied {
 String name;
 String vorname;
 String strasse;
 int hausnummer;
 String ort;
 int postleitzahl;
 int eintrittsjahr;
 int geburtsjahr;
 boolean ehrenmitglied;

 public Clubmitglied(){}
}

Vielleicht ist Ihnen aufgefallen, dass Sie diesen Defaultkonstruktor bereits kennen und auch schon
aufgerufen haben.

public void run(){
 Clubmitglied mitglied1;
 mitglied1 = new Clubmitglied ();
}

Jedes mal, wenn Sie einen eigenen Datentyp (hier Clubmitglied) erstellt haben, haben Sie bereits den
Defaultkonstruktor aufgerufen.

Konstruktoren

Nehmen wir an, Sie möchten ein Clubmitglied erstellen. So wäre es doch praktisch, wenn sie bereits
dem Konstruktor den Wert für Vorname und Nachname übergeben könnten. Dazu müssen Sie einen
Konstruktor ergänzen, sodass er Parameter entgegen nehmen kann.

Der Aufruf zur Instanzierung und zur Speicherung des neuen Objekts in der Variablen clubmitglied1
wäre dabei folgender:

public void run(){
 Clubmitglied mitglied1;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 3/9 LU07b - Vom eigenen Datentyp zur Klasse

BZZ - Modulwiki - https://wiki.bzz.ch/

 mitglied1 = new Clubmitglied ("Peter", "Meier");
}

Damit werden die String „Peter“ und „Meier“ mitgegeben. Nun sucht das Programm nach dem
passenden Konstruktor in der Klasse Clubmitglied. Hier wird nach einer Methode gesucht, die
Clubmitglied heißt und zwei Parameter des Types String verarbeiten kann.

Der Name und die Parameter, welche die Methode bekommen kann, werden auch Signatur einer
Methode genannt. Die Signatur muss immer eindeutig sein, das bedeutet, sie darf es nur einmal in
einer Klasse geben.

In unserem Beispiel würde der Konstruktor sich wie folgt verändern:

public class Clubmitglied {
 String name;
 String vorname;
 String strasse;
 int hausnummer;
 String ort;
 int postleitzahl;
 int eintrittsjahr;
 int geburtsjahr;
 boolean ehrenmitglied;

 public Clubmitglied(){
 }

 public Clubmitglied(String vorname, String nachname){
 this.vorname = vorname;
 this.nachname = nachname;
 }
}

Das ist der zur Instanziierung passende Java Konstruktor. Damit kannst du zwei String Werte bei der
Instanziierung übergeben.

Mit dem Befehl:

this.vorname = vorname;

sorgst du lediglich dafür, dass in das Attribut vorname der Klasse der Wert aus dem Parameter
vorname gespeichert wird.

Überladene Konstruktoren

Wie bei normalen Methoden , kann auch die Konstruktormethode überladen werden. Schauen wir uns

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
2024/03/28
14:07

modul:archiv:m319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

wieder ein Beispiel an. Angenommen Sie möchten ein Objekt clubmitglied1 und ein Objekt
clubmitglied2 erstellen. Weiterhin gehen wir davon aus, dass Sie den Namen und Vornamen, des
clubmitglied1 schon kennen. Vom clubmitglied2 hingegen wissen Sie keinen Nachnamen,
weshalb das entsprechende Attribut auf „unbekannt“ gesetzt werden soll.

In Java kannst du das folgendermaßen instanzieren:

public void run(){
 Clubmitglied mitglied1, mitglied2;
 mitglied1 = new Clubmitglied ("Peter", "Meier");
 mitglied2 = new Clubmitglied ("Manuel");
}

Der Code für den Java Konstruktor könnten Sie so umsetzen:

public class Clubmitglied {
 String name;
 String vorname;
 String strasse;
 int hausnummer;
 String ort;
 int postleitzahl;
 int eintrittsjahr;
 int geburtsjahr;
 boolean ehrenmitglied;

 public Clubmitglied(){
 }

 public Clubmitglied(String vorname, String nachname){
 this.vorname = vorname;
 this.nachname = nachname;
 }

 public Clubmitglied(String vorname){
 this.vorname = vorname;
 this.nachname = "unbekannt";
 }
}

Damit hätten Sie Ihren Konstruktor überladen. Sie benutzen zweimal den gleichen Methodenaufruf, in
dem Fall Clubmitglied(), jedoch durch die unterschiedlichen Parameter zwei unterschiedliche
Signaturen. Deshalb wird für das clubmitglied1 der erste und für das clubmitglied2 der zweite
Konstruktor angesprochen.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 5/9 LU07b - Vom eigenen Datentyp zur Klasse

BZZ - Modulwiki - https://wiki.bzz.ch/

Mit der Referenz this. zeigen Sie dem Programm an, dass sie sich auf ein Attribut beziehen. Also das
Attribut, das Sie am Anfang der Klasse im Bereich der Eigenschaften deklariert haben.

Sichtbarkeit der Attribute

Klassen, Methoden sowie Attribute können mit einem Sichtbarkeits-Modifier ergänzt werden. Im Modul
319 interessieren uns nur die Sichtbarkeiten private und public

private Attribute oder Methoden sind nur von innerhalb der Klasse zugänglich.
public Attribute oder Methoden sind auch von ausserhalb zugänglich.

Wir gewöhnen uns an

Attribute immer mit private zu deklarieren.
Methoden die nur innerhalb der Klasse verwendet
werden auch als private zu deklarieren.
Methoden die Funktionen für die Klasse zur Verfügung
stellen als public zu deklarieren.

Für unsere Klasse Clubmitglied würde die Umsetzung so aussehen:

public class Clubmitglied {
 private String name;
 private String vorname;
 private String strasse;
 private int hausnummer;
 private String ort;
 private int postleitzahl;
 private int eintrittsjahr;
 private int geburtsjahr;
 private boolean ehrenmitglied;

 public Clubmitglied(){
 }

 public Clubmitglied(String vorname, String nachname){
 this.vorname = vorname;
 this.nachname = nachname;
 }

 public Clubmitglied(String vorname){
 this.vorname = vorname;
 this.nachname = "unbekannt";
 }
}

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
2024/03/28
14:07

modul:archiv:m319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

Da wir die Attribute jetzt auf private gesetzt haben,
können wir nicht mehr direkt auf die Attribute zugreifen.
Dieses Problem kann durch Getter und Setter gelöst
werden.

Getter und Setter

In Klassen werden die Attribute mit dem Sichtbarkeits-Modifier private versehen, da hier nichts von
außerhalb der Klasse geändert werden soll. Die Attribute sollen nicht so einfach zugänglich sein. Die
Kontrolle ob und wie die Werte der Attribute geändert werden können soll in der Hand der Klasse
bleiben. Dafür gibt es die sogenannten getter und setter Java Methoden.

Um dir die Funktionsweisen dieser speziellen Methoden zu zeigen, bauen wir uns die Klasse Mensch.
Sie soll als Attribut einen Namen haben. Außerdem soll sie einen Konstruktor, der den Namen der
Klassenvariablen zuweist, besitzen. Danach kommt eine Setter und eine Getter Methode.

public class Mensch{

 //Attribut
 private String name;
 private boolean isMann;

 //Konstruktor
 public Mensch(String name){
 this.name = name;
 }

 /**
 * Setter: Setzt den Namen
 * @param name neuer Name
 */
 public void setName(String name){
 this.name = name;
 }

 /**
 * Getter: Gibt den Namen zurück
 * @return name Name des Menschen
 */
 public String getName(){
 return this.name;
 }

 /**

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 7/9 LU07b - Vom eigenen Datentyp zur Klasse

BZZ - Modulwiki - https://wiki.bzz.ch/

 * Setter für das Geschlecht
 * @param isMann für das Geschlecht
 */
 public void setIsMann(boolean isMann) {
 this.isMann = isMann;
 }

 /**
 * Getter für das Geschlecht
 * @return das Geschlecht
 */
 public boolean isMann() {
 return isMann;
 }
}

Getter und Setter Methoden sind beide public, weil du ja von einer Klasse außerhalb auf diese
zugreifen möchtest. Es ist dabei Konvention ein get oder set vor den Namen der Methode zu
schreiben. Der Name der Methode ist dabei gleich dem Variablennamen der Variable, die in der
Methode behandelt werden soll. In unserem Fall entsteht so der Name setName() und getName().
Bei Boolean werden die Vorsilben set und is verwendet, in unserem Fall setIsMann() und
isMann().

Die Set-Methode gibt an den keinen Wert zurück, sie ist also void. Sie weißt lediglich dem Attribut
name einen neuen Wert zu. Daher ist es wichtig, dass der Methode einen Parameter des Types
String mit dem neuen Namen übergeben wird.

Die Get-Methode hingegen gibt den aktuellen Wert des Attributes zurück. Das ist eine Möglichkeit die
Belegung der Variablen zu erfahren. Der return-Wert entspricht hier also dem Datentyp der Variable.

Gültigkeitsbereich (Scope) von Variablen

Wir unterscheiden zwischen drei verschiedenen Variablen-Typen, die sich danach unterscheiden, wo
sie im Code der jeweiligen Klasse deklariert werden. Der Ort, wo wir eine Variable erzeugen, hat
nämlich entscheidenden Einfluss auf ihren Gültigkeitsbereich.

Attribute: Werden auch Instanzvariablen genannt. Diese werden direkt zu Beginn einer Klasse
deklariert. Wir können diese Variablen in der gesamten Klasse verwenden.
Parameter-Variablen: Diese Variablen werden als Parameter von Methoden innerhalb der
runden Klammern im Methoden-Kopf deklariert. Sie können nur in der entsprechenden Methode
verwendet werden.
Lokale Variablen: Werden innerhalb eines Methoden-Körpers deklariert. Sie können von der
Zeile ihrer Deklaration an bis zum Ende der Methode verwendet werden.

Es ist am besten, wenn wir uns das Prinzip einmal konkret anhand einer kleinen Java-Klasse
anschauen:

Last
update:
2024/03/28
14:07

modul:archiv:m319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

public class Fahrzeug {

 // Instanzvariablen:
 private String bezeichnung;
 private double geschwindigkeit;

 // Konstruktor mit 2 Parameter-Variablen:
 public Fahrzeug(String bezeichnung, double
geschwindigkeit){
 this.bezeichnung = bezeichnung;
 this.geschwindigkeit = geschwindigkeit;
 }

 // Methode mit einer Parameter-Variablen und
 // einer lokalen Variablen:
 public double getFahrtdauer(int fahrtstrecke){
 double zeit = (fahrtstrecke / geschwindigkeit) * 60;
 return zeit;
 }
}

Folgende Variablen kommen in dieser Beispielklasse vor:

Attribute: Die Klasse Fahrzeug hat insgesamt zwei Instanzvariablen, nämlich bezeichnung
und geschwindigkeit. Wir können auf diese drei Variablen von überall aus in unserer Klasse
zugreifen und das tun wir auch in unserem Code. Im Konstruktor nämlich initialisieren wir die
beiden Instanzvariablen. Auch in der Methode getFahrtdauer() greifen wir auf die
Instanzvariable geschwindigkeit zu. Wir können es also nochmal sagen: Instanzvariablen
gehen immer!

Parametervariablen: In unserer Beispielklasse gibt es drei Parametervariablen. Zwei werden
im Kopf des Konstruktors (bezeichnungP, geschwindigkeitP) und die dritte (fahrtstrecke)
im Kopf der Methode getFahrtDauer() deklariert. Jede Parameter-Variable ist ausschließlich
in der Methode verfügbar, zu der sie gehört.

Lokale Variablen: Kommen wir nun zum dritten Variablen-Typ, den lokalen Variablen. Von
diesen haben wir genau eine in unserem Code - erkennen Sie, wo sie sich befindet? Richtig:
zeit heißt sie und ist innerhalb der Methode getFahrtdauer() deklariert und mit dem
Ergebniswert der Rechnung initialisiert. Man könnte Parametervariablen und lokale Variablen
auch „Methoden-Variablen“ nennen, da sie ja fest zu den Methoden gehören, in denen sie
erzeugt wurde und auch nur dort benutzbar bzw. sichtbar sind

Es gibt in der Verwendung von Parametervariablen und lokalen Variablen aber einen feinen
Unterschied: Auf Parametervariablen können in der gesamten Methode zugegriffen können. Lokale
Variablen dagegen innerhalb „ihrer“ Methode erst in den Code-Zeilen nach der Initialisierung (also
nachdem sie erstellt wurde).

Was macht man, wenn Attribut und Parameter oder

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 9/9 LU07b - Vom eigenen Datentyp zur Klasse

BZZ - Modulwiki - https://wiki.bzz.ch/

lokale Variable denselben Namen haben? Sie sehen die
Lösung im Konstruktor des Fahrzeug. Wir verwenden das
Schlüsselwort this um auf das Attribut zu zeigen.

Merken Sie sich: Wir verwenden das Schlüsselwort this
um innerhalb von Mehtoden oder Konstruktoren auf
ein Attribut zu zeigen.

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1711631267

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1711631267

	LU07b - Vom eignen Datentyp zur Klasse
	Repetition eigene Datentypen
	Eigene Datentypen zu Klassen umbauen
	Defaultkonstruktor
	Konstruktoren
	Überladene Konstruktoren
	Sichtbarkeit der Attribute
	Getter und Setter
	Gültigkeitsbereich (Scope) von Variablen

