2026/01/19 01:38 1/9 LUO7b - Vom eigenen Datentyp zur Klasse

LUO7b - Vom eigenen Datentyp zur Klasse

Repetition eigene Datentypen

Wir kennen bereits die eigenen Datentypen. Unsere eigenen Datentypen haben einen Namen und
haben eigene Attribute/Eigenschaften.

Der eigene Datentyp Clubmitglied weist z.B. die folgenden Attribute auf

Attribute UML
Name, Vorname, Adresse, Ort: String
Postleitzahl, Eintrittsjahr, Geburtsjahr: int|x]
Ehrenmitglied: boolean

In Java sieht dieser Datentyp wie folgt aus:

Clubmitglied
String name
String vorname
String strasse
int hausnummer
String ort
int postleitzahl
int eintrittsjahr
int geburtsjahr
boolean ehrenmitglied

Eigene Datentypen zu Klassen umbauen

Defaultkonstruktor

In einer Klasse ist der Java Konstruktor eine Methode, die den gleichen Namen wie die Klasse hat. Sie
wird dazu verwendet, ein neues Objekt dieser einen Klasse zu erstellen. Das ist der Grund, weshalb
jede Klasseninstanz einen Konstruktor haben muss.

Programmierst du den Defaultkonstruktor nicht selbst, so
erstellt der Compiler des Programms Java automatisch einen
& sogenannten Defaultkonstruktor. Dabei ist die Methode ohne
Parameter und hat keinen Inhalt. Ebenfalls kannst du den
speziellen Konstruktor nicht sehen, da er nur im Hintergrund

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m319/learningunits/lu05/uml_clubmitglied.png?id=modul%3Aarchiv%3Am319%3Alearningunits%3Alu07%3Alu07b-eigenerdatentypzuklasse
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
2025/01/28
21:46

modul:archiv:im319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1738097188

ablauft.

Der Defaultkonstruktor fur die Klasse Clubmitglied wirde folgendermassen aussehen:

Clubmitglied
String name
String vorname
String strasse
int hausnummer
String ort
int postleitzahl
int eintrittsjahr
int geburtsjahr
boolean ehrenmitglied

Clubmitglied

Vielleicht ist Innen aufgefallen, dass Sie diesen Defaultkonstruktor bereits kennen und auch schon
aufgerufen haben.

void run
Clubmitglied mitgliedl
mitgliedl Clubmitglied

Jedes mal, wenn Sie einen eigenen Datentyp (hier Clubmitglied) erstellt haben, haben Sie bereits den
Defaultkonstruktor aufgerufen.

Konstruktoren

Nehmen wir an, Sie méchten ein Clubmitglied erstellen. So ware es doch praktisch, wenn sie bereits
dem Konstruktor den Wert fir Vorname und Nachname Gbergeben kdnnten. Dazu mlssen Sie einen
Konstruktor erganzen, sodass er Parameter entgegen nehmen kann.

Der Aufruf zur Instanzierung und zur Speicherung des neuen Objekts in der Variablen clubmitgliedl
ware dabei folgender:

void run
Clubmitglied mitgliedl

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 3/9 LUO7b - Vom eigenen Datentyp zur Klasse

mitgliedl Clubmitglied ("Peter", "Meier"

Damit werden die String ,Peter” und ,Meier” mitgegeben. Nun sucht das Programm nach dem
passenden Konstruktor in der Klasse Clubmitglied. Hier wird nach einer Methode gesucht, die
Clubmitglied heist und zwei Parameter des Types String verarbeiten kann.

Der Name und die Parameter, welche die Methode bekommen kann, werden auch Signatur einer
Methode genannt. Die Signatur muss immer eindeutig sein, das bedeutet, sie darf es nur einmal in
einer Klasse geben

In unserem Beispiel wurde der Konstruktor sich wie folgt verandern:

Clubmitglied
String name
String vorname
String strasse
int hausnummer
String ort
int postleitzahl
int eintrittsjahr
int geburtsjahr
boolean ehrenmitglied

Clubmitglied

Clubmitglied(String vorname, String nachname
.vorname = vorname
.nachname = nachname

Das ist der zur Instanziierung passende Java Konstruktor. Damit kannst du zwei String Werte bei der
Instanziierung Ubergeben.

Mit dem Befehl:
this.vorname = vorname;

sorgst du lediglich dafur, dass in das Attribut vorname der Klasse der Wert aus dem Parameter
vorname gespeichert wird.

Uberladene Konstruktoren

Wie bei normalen Methoden , kann auch die Konstruktormethode uberladen werden. Schauen wir uns

BZZ - Modulwiki - https://wiki.bzz.ch/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
2025/01/28
21:46

modul:archiv:im319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1738097188

wieder ein Beispiel an. Angenommen Sie mochten ein Objekt clubmitgliedl und ein Objekt
clubmitglied?2 erstellen. Weiterhin gehen wir davon aus, dass Sie den Namen und Vornamen, des
clubmitgliedl schon kennen. Vom clubmitglied2 hingegen wissen Sie keinen Nachnamen,
weshalb das entsprechende Attribut auf ,,unbekannt” gesetzt werden soll.

In Java kannst du das folgendermalien instanzieren:

void run
Clubmitglied mitgliedl, mitglied2
mitgliedl Clubmitglied ("Peter", "Meier"
mitglied?2 Clubmitglied ("Manuel"

Der Code fur den Java Konstruktor kdnnten Sie so umsetzen:

Clubmitglied
String name
String vorname
String strasse
int hausnummer
String ort
int postleitzahl
int eintrittsjahr
int geburtsjahr
boolean ehrenmitglied

Clubmitglied

Clubmitglied(String vorname, String nachname
.vorname = vorname
.hachname nachname

Clubmitglied(String vorname
.vorname vorname
.nachname "unbekannt"

Damit hatten Sie lhren Konstruktor Gberladen. Sie benutzen zweimal den gleichen Methodenaufruf, in
dem Fall Clubmitglied(), jedoch durch die unterschiedlichen Parameter zwei unterschiedliche
Signaturen. Deshalb wird flr das clubmitgliedl der erste und fur das clubmitglied?2 der zweite
Konstruktor angesprochen.

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 5/9 LUO7b - Vom eigenen Datentyp zur Klasse

Mit der Referenz this. zeigen Sie dem Programm an, dass sie sich auf ein Attribut beziehen. Also das
Attribut, das Sie am Anfang der Klasse im Bereich der Eigenschaften deklariert haben.

Sichtbarkeit der Attribute

Klassen, Methoden sowie Attribute kdnnen mit einem Sichtbarkeits-Modifier erganzt werden. Im Modul
319 interessieren uns nur die Sichtbarkeiten private und public

e private Attribute oder Methoden sind nur von innerhalb der Klasse zuganglich.
e public Attribute oder Methoden sind auch von ausserhalb zuganglich.

Wir gewdhnen uns an

e Attribute immer mit private zu deklarieren.

. e Methoden die nur innerhalb der Klasse verwendet
werden auch als private zu deklarieren.

e Methoden die Funktionen fur die Klasse zur Verfligung
stellen als public zu deklarieren.

FUr unsere Klasse Clubmitglied wirde die Umsetzung so aussehen:

Clubmitglied
String name
String vorname
String strasse
int hausnummer
String ort
int postleitzahl
int eintrittsjahr
int geburtsjahr
boolean ehrenmitglied

Clubmitglied

Clubmitglied(String vorname, String nachname
.vorname = vorname
.nachname = nachname

Clubmitglied(String vorname
.vorname = vorname
.hachname "unbekannt"

BZZ - Modulwiki - https://wiki.bzz.ch/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
2025/01/28
21:46

modul:archiv:im319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1738097188

Da wir die Attribute jetzt auf private gesetzt haben,
konnen wir nicht mehr direkt auf die Attribute zugreifen.
Dieses Problem kann durch Getter und Setter geldst
werden.

Getter und Setter

In Klassen werden die Attribute mit dem Sichtbarkeits-Modifier private versehen, da hier nichts von
auBerhalb der Klasse geandert werden soll. Die Attribute sollen nicht so einfach zuganglich sein. Die
Kontrolle ob und wie die Werte der Attribute geandert werden kdnnen soll in der Hand der Klasse
bleiben. Daflr gibt es die sogenannten getter und setter Java Methoden.

Um dir die Funktionsweisen dieser speziellen Methoden zu zeigen, bauen wir uns die Klasse Mensch.
Sie soll als Attribut einen Namen haben. AuRerdem soll sie einen Konstruktor, der den Namen der
Klassenvariablen zuweist, besitzen. Danach kommt eine Setter und eine Getter Methode.

Mensch

//Attribut
String name
boolean isMann

//Konstruktor
Mensch(String name
.hame = name

/X%
* Setter: Setzt den Namen
* @param name neuer Name
*/
void setName(String name
.hame = name

/**
* Getter: Gibt den Namen zuruck
* @return name Name des Menschen
*/
String getName
.hame

VEks

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 7/9 LUO7b - Vom eigenen Datentyp zur Klasse

* Setter fir das Geschlecht
* @param isMann fir das Geschlecht
ws
void setIsMann(boolean isMann
.1isMann isMann

/**
* Getter fur das Geschlecht
* @return das Geschlecht
W
boolean isMann
isMann

Getter und Setter Methoden sind beide public, weil du ja von einer Klasse aullerhalb auf diese
zugreifen mochtest. Es ist dabei Konvention ein get oder set vor den Namen der Methode zu
schreiben. Der Name der Methode ist dabei gleich dem Variablennamen der Variable, die in der
Methode behandelt werden soll. In unserem Fall entsteht so der Name setName () und getName().
Bei Boolean werden die Vorsilben set und is verwendet, in unserem Fall setIsMann() und
isMann().

Die Set-Methode gibt an den keinen Wert zurlck, sie ist also void. Sie weilt lediglich dem Attribut
name einen neuen Wert zu. Daher ist es wichtig, dass der Methode einen Parameter des Types
String mit dem neuen Namen Ubergeben wird.

Die Get-Methode hingegen gibt den aktuellen Wert des Attributes zurlick. Das ist eine Mdglichkeit die
Belegung der Variablen zu erfahren. Der return-Wert entspricht hier also dem Datentyp der Variable.

Gultigkeitsbereich (Scope) von Variablen

Wir unterscheiden zwischen drei verschiedenen Variablen-Typen, die sich danach unterscheiden, wo
sie im Code der jeweiligen Klasse deklariert werden. Der Ort, wo wir eine Variable erzeugen, hat
namlich entscheidenden Einfluss auf ihren Gultigkeitsbereich.

e Attribute: Werden auch Instanzvariablen genannt. Diese werden direkt zu Beginn einer Klasse
deklariert. Wir kdnnen diese Variablen in der gesamten Klasse verwenden.

* Parameter-Variablen: Diese Variablen werden als Parameter von Methoden innerhalb der
runden Klammern im Methoden-Kopf deklariert. Sie kdnnen nur in der entsprechenden Methode
verwendet werden.

e Lokale Variablen: Werden innerhalb eines Methoden-Kdrpers deklariert. Sie kdnnen von der
Zeile ihrer Deklaration an bis zum Ende der Methode verwendet werden.

Es ist am besten, wenn wir uns das Prinzip einmal konkret anhand einer kleinen Java-Klasse
anschauen:

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:

2025/01/28

21:46

modul:archiv:im319:learningunits:lu07:lu07b-eigenerdatentypzuklasse https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1738097188

Fahrzeug

// Instanzvariablen:
String bezeichnung
double geschwindigkeit

// Konstruktor mit 2 Parameter-Variablen:
Fahrzeug(String bezeichnung, double
geschwindigkeit
.bezeichnung = bezeichnung
.geschwindigkeit = geschwindigkeit

// Methode mit einer Parameter-Variablen und
// einer lokalen Variablen:
double getFahrtdauer(int fahrtstrecke
double zeit fahrtstrecke / geschwindigkeit
zeit

Folgende Variablen kommen in dieser Beispielklasse vor:

¢ Attribute: Die Klasse Fahrzeug hat insgesamt zwei Instanzvariablen, namlich bezeichnung

und geschwindigkeit. Wir konnen auf diese drei Variablen von Uberall aus in unserer Klasse
zugreifen und das tun wir auch in unserem Code. Im Konstruktor namlich initialisieren wir die
beiden Instanzvariablen. Auch in der Methode getFahrtdauer() greifen wir auf die
Instanzvariable geschwindigkeit zu. Wir kdnnen es also nochmal sagen: Instanzvariablen
gehen immer!

Parametervariablen: In unserer Beispielklasse gibt es drei Parametervariablen. Zwei werden
im Kopf des Konstruktors (bezeichnungP, geschwindigkeitP) und die dritte (fahrtstrecke)
im Kopf der Methode getFahrtDauer() deklariert. Jede Parameter-Variable ist ausschlieBlich
in der Methode verfugbar, zu der sie gehort.

Lokale Variablen: Kommen wir nun zum dritten Variablen-Typ, den lokalen Variablen. Von
diesen haben wir genau eine in unserem Code - erkennen Sie, wo sie sich befindet? Richtig:
zeit heilst sie und ist innerhalb der Methode getFahrtdauer () deklariert und mit dem
Ergebniswert der Rechnung initialisiert. Man kdnnte Parametervariablen und lokale Variablen
auch ,Methoden-Variablen“ nennen, da sie ja fest zu den Methoden gehoren, in denen sie
erzeugt wurde und auch nur dort benutzbar bzw. sichtbar sind

Es gibt in der Verwendung von Parametervariablen und lokalen Variablen aber einen feinen
Unterschied: Auf Parametervariablen kénnen in der gesamten Methode zugegriffen kdnnen. Lokale
Variablen dagegen innerhalb ,ihrer” Methode erst in den Code-Zeilen nach der Initialisierung (also
nachdem sie erstellt wurde).

_; Was macht man, wenn Attribut und Parameter oder

https://wiki.bzz.ch/ Printed on 2026/01/19 01:38

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/19 01:38 9/9 LUO7b - Vom eigenen Datentyp zur Klasse

lokale Variable denselben Namen haben? Sie sehen die
Lésung im Konstruktor des Fahrzeug. Wir verwenden das
Schlusselwort this um auf das Attribut zu zeigen.

Merken Sie sich: Wir verwenden das Schliisselwort this
um innerhalb von Mehtoden oder Konstruktoren auf
ein Attribut zu zeigen.

© Kevin Maurizi

From: 3
https://wiki.bzz.ch/ - BZZ - Modulwiki [=] %

Permanent link: 'I'-I"i'

https://wiki.bzz.ch/modul/archiv/im319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1738097188 :l-.l'. '_:_'t_# "
-ﬁE‘- [y "

Last update: 2025/01/28 21:46 orf ErE:‘
l—ll - r-'- ‘I-

BZZ - Modulwiki - https://wiki.bzz.ch/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu07/lu07b-eigenerdatentypzuklasse?rev=1738097188

	LU07b - Vom eigenen Datentyp zur Klasse
	Repetition eigene Datentypen
	Eigene Datentypen zu Klassen umbauen
	Defaultkonstruktor
	Konstruktoren
	Überladene Konstruktoren
	Sichtbarkeit der Attribute
	Getter und Setter
	Gültigkeitsbereich (Scope) von Variablen

