2026/02/14 06:46 1/7 LUO8D - Java und die Zeit

LUO8Db - Java und die Zeit

Das speichern von Zeit und Datumswerten ist in vielen Applikationen notwendig. Java bietet uns mit
den Datentypen LocalDate, LocalTime, LocalDateTime, Period und Duration aus der
Bibliothek java.time einen eifach zu benutzenden Datentyp daflr.

Einfache Datumswerte - LocalDate

Einfache Datumswerte beinhalten lediglich das Datum, ohne Zeitangabe.

LocalDate erstellen

Es gibt verschiedene Mdaglichkeiten ein LocalDate zu erstellen, das den 8. Januar 2020 darstellt:

Wir erstellen das LocalDate uber den Aufruf der of () Methode.

LocalDate date = LocalDate.of , 1,

Der Monat kann auch mit dem Enum Month angegeben werden:

LocalDate date = LocalDate.of , Month.JANUARY,

Eine weitere Moglichkeit besteht darin, ein Datum durch Parsen einer Zeichenkette (String) zu
erzeugen. Wir kdnnen die parse-Methode mit nur einem einzigen Argument verwenden, um ein
Datum im Format yyyy-mm-dd zu analysieren:

LocalDate date = LocalDate.parse("2020-01-08"

Wir kdnnen auch ein anderes Datumsformat angeben, dies mit Hilfe der DateTimeFormatter-Klasse
als zweiten Parameter der Parse-Methode:

LocalDate date LocalDate.parse("8-Jan-2020",
DateTimeFormatter.ofPattern("d-MMM-yyyy"

LocalDate funktionen

Hier sind einige Funktionen aufgelistet, die LocalDate bietet:

Wir kdnnen vom LocalDate den heutige Tag erhalten:
LocalDate date LocalDate.now

Wir kdnnen Tage/Wochen/Monate/Jahre hinzurechnen oder entfernen:

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/03/28
14:07

modul:archiv:im319:learningunits:lu08:lu08b-javaunddiezeit https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu08/lu08b-javaunddiezeit

LocalDate tomorrow = LocalDate.now().plusDays
LocalDate yesterday= LocalDate.now().minusDays

Es gibt auch passend dazu die Funktionen plus/minusWeeks, plus/minusMonths und
plus/minusYears

Wir kdnnen Datumswerte vergleichen:

boolean notBefore
LocalDate.parse("2042-06-12").isBefore(LocalDate.parse("2042-06-11"
boolean isAfter
LocalDate.parse("2042-06-12").isAfter(LocalDate.parse("2042-06-11"
Wir konnen feststellen ob es ein Schaltjahr ist:

boolean leapYear = LocalDate.now().islLeapYear

Wir konnen die Zeit zwischen den Daten berechnen:

LocalDate tomorrow = LocalDate.now().plusDays
LocalDate yesterday- LocalDate.now().minusDays

Period timeBetween Period.between(yesterday, tomorrow); // Wir erhalten
den Datentyp Period. Mehr dazu im Kapitel zu Period

Wir kénnen einzelne Tage/Monate/Jahre abfragen.

LocalDate today = LocalDate.now
int day = today.getDayOfMonth
int month = today.getMonthValue
int year = today.getYear

Es gibt noch viele weitere Funktionen die zur Verfugung

& stehen, eine Liste mit Beschreibung finden Sie im Java-API

Einfache Zeitwerte - LocalTime

Einfache Zeitwerte beinhalten lediglich die Zeit, ohne Datumsangabe.

LocalTime erstellen

Es gibt verschiedene Méglichkeiten eine LocalTime zu erstellen, die den 7:30 Uhr darstellt:

https://wiki.bzz.ch/ Printed on 2026/02/14 06:46


https://docs.oracle.com/javase/8/docs/api/java/time/LocalDate.html

2026/02/14 06:46 3/7 LUO8D - Java und die Zeit

Wir erstellen die LocalTime Uber den Aufruf der of () Methode.
LocalTime time LocalTime.of (7,

Eine weitere MAglichkeit besteht darin, eine Zeit durch Parsen einer Zeichenkette (String) zu
erzeugen. Wir kdnnen die parse-Methode mit nur einem einzigen Argument verwenden, um ein
Datum im Format hh-mm zu analysieren:

LocalTime time = LocalTime.parse("07:30"

LocalTime funktionen

Hier sind einige Funktionen aufgelistet, die LocalTime bietet:

Wir konnen eine LocalTime von der aktuellen Zeit erhalten:
LocalTime now LocalTime.now
Wir konnen Sekunden/Minuten/Stunden hinzurechnen oder entfernen:

LocalTime in5Minutes LocalTime.now().plusMinutes
LocalTime beforeS5Minutes LocalTime.now().minusMinutes

Es gibt auch passend dazu die Funktionen plus/minusSeconds und plus/minusHours

Wir kdnnen Zeitwerte vergleichen:

boolean notBefore

LocalTime.parse("7:30") .isBefore(LocalTime.parse("6:30"
// oder auch

LocalTime time LocalTime.parse("2:45"

boolean isAfter LocalTime.parse("7:30").isAfter(time
// oder auch

LocalTime time0 LocalTime.parse("2:45"

LocalTime timel LocalTime.parse("7:30"

boolean isAfter = timel.isAfter(time

Wir konnen die Zeit zwischen zwei Uhrzeiten berechnen:

LocalTime time0 LocalTime.parse("2:45"
LocalTime timel = LocalTime.parse("7:30"

Duration duration Duration.between(timeO, timel // Wir erhalten den
Datentyp Duration. Mehr dazu im Kapitel zu Duration.

Wir kdnnen einzelne Stunden/Minuten/Sekunden abfragen.

LocalTime now LocalTime.now
int hour now.getHour

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/03/28
14:07

modul:archiv:im319:learningunits:lu08:lu08b-javaunddiezeit https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu08/lu08b-javaunddiezeit

int minute now.getMinute
int second now.getSecond

Es gibt noch viele weitere Funktionen die zur Verfliigung
& stehen, eine Liste mit Beschreibung finden Sie im Java-API

Einfache Zeitdatumswerte - LocalDateTime

LocalDateTime wird verwendet, um eine Kombination aus Datum und Uhrzeit darzustellen. Dies ist die
am haufigsten verwendete Klasse, wenn wir eine Kombination aus Datum und Uhrzeit bendtigen.

LocalDateTime erstellen

Es gibt verschiedene Méglichkeiten ein LocalDateTime zu erstellen, das den 8. Januar 2020
13:30 darstellt:

Wir erstellen das LocalDateTime Uber den Aufruf der of () Methode.

LocalDateTime date = LocalDateTime.of , 1, 8, ,

Der Monat kann auch mit dem Enum Month angegeben werden:

LocalDate date = LocalDate.of , Month.JANUARY, 8, )

Eine weitere Moglichkeit besteht darin, ein Datum durch Parsen einer Zeichenkette (String) zu
erzeugen. Wir konnen die parse-Methode mit nur einem einzigen Argument verwenden, um ein
Datum im Format yyyy-mm-ddThh:mm zu analysieren:

LocalDateTime dateTime= LocalDateTime.parse("2020-01-08T13:30"

Wir kénnen auch ein anderes Datumszeitformat angeben, dies mit Hilfe der DateTimeFormatter-
Klasse als zweiten Parameter der Parse-Methode:

LocalDateTime dateTime = LocalDateTime.parse("08.01.2020 13:30",
DateTimeFormatter.ofPattern("d.M.yyyy HH:mm"

LocalDateTime funktionen

Hier sind einige Funktionen aufgelistet, die LocalDateTime bietet:

Wir kdnnen vom LocalDateTime den heutige Tag mit der Uhrzeit erhalten:

https://wiki.bzz.ch/ Printed on 2026/02/14 06:46


https://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html

2026/02/14 06:46 5/7 LUO8D - Java und die Zeit

LocalDateTime date LocalDateTime.now
Wir kdnnen Tage/Wochen/Monate/Jahre hinzurechnen oder entfernen:

LocalDateTime tomorrow = LocalDateTime.now().plusDays
LocalDateTime yesterday LocalDateTime.now().minusDays

Es gibt auch passend dazu die Funktionen plus/minusSeconds, plus/minusMinutes,
plus/minusHours, plus/minusWeeks, plus/minusMonths und plus/minusYears

Wir kdnnen Datumswerte vergleichen:

boolean notBefore

LocalDateTime.parse("2042-06-12T13:30") .isBefore(LocalDateTime.parse("2042-0
6-11T04:30"

boolean isAfter
LocalDateTime.parse("2042-06-12T13:30").isAfter(LocalDateTime.parse("2042-06
-11T04:30"

Wir konnen die Zeit zwischen den Daten berechnen:

LocalDateTime tomorrow = LocalDateTime.now().plusDays
LocalDateTime yesterday = LocalDateTime.now().minusDays

Duration timeBetween Duration.between(yesterday, tomorrow); // Wir
erhalten den Datentyp Duration. Mehr dazu im Kapitel zu Duration

Wir kdnnen einzelne Tage/Monate/Jahre abfragen.

LocalDateTime today = LocalDateTime.now
int day = today.getDayOfMonth

int month = today.getMonthValue

int year = today.getYear

int hour = today.getHour

int minute = today.getMinute

Es gibt noch viele weitere Funktionen die zur Verfligung
& stehen, eine Liste mit Beschreibung finden Sie im Java-API

Period

Die Klasse Period verwendet die Einheiten Jahr, Monat und Tag zur Darstellung eines Zeitraums.

Wir kdnnen ein Period-Objekt als Differenz zwischen zwei Daten erhalten, indem wir die Methode
between() verwenden:

BZZ - Modulwiki - https://wiki.bzz.ch/


https://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html

Last

update: modul:archiv:im319:learningunits:lu08:lu08b-javaunddiezeit https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu08/lu08b-javaunddiezeit

2024/03/28
14:07

LocalDate startDate LocalDate.of , 2,
LocalDate endDate LocalDate.of , 1,

Period period Period.between(startDate, endDate

AnschlieSend kénnen wir die Datumseinheiten des Zeitraums mit den Methoden getYears(),
getMonths(), getDays() ermitteln:

System.out.println("Years:" period.getYears
" Months:" Zeitraum.getMonths
" Days: "+Zeitraum.getTage

Die Methode isNegative(), die true zurlckgibt wenn eine der Einheiten negativ ist, kann
verwendet werden, um festzustellen, ob das Enddatum hoher ist als das Startdatum:

System.out.println(period.isNegative

Wenn isNegative() den Wert false zurtckgibt, dann liegt das Startdatum vor dem Enddatum.

Eine andere Mdglichkeit, ein Period-Objekt zu erstellen, basiert auf der Anzahl der Tage, Monate,
Wochen oder Jahre unter Verwendung spezieller Methoden:

Period fromUnits Period.of (3, ,
Period fromDays Period.ofDays
Period fromMonths Period.ofMonths
Period fromYears Period.ofYears
Period fromWeeks Period.ofWeeks

Es gibt noch viele weitere Funktionen die zur Verfugung
&3 stehen, eine Liste mit Beschreibung finden Sie im Java-API

Duration

Die Klasse Duration stellt ein Zeitintervall in Sekunden oder Nanosekunden dar und eignet sich am
besten fur die Handhabung kirzerer Zeitspannen in Fallen, die mehr Prazision erfordern.

Wir kdnnen die Differenz zwischen zwei Zeitpunkten als Duration-Objekt mit der Methode between ()
bestimmen:

LocalTime start LocalTime.of (1, , , //(Stunde, Minute, Sekunde,
Nanosekunden)

LocalTime end LocalTime.of (3, , ,

Duration.between(start, end).getSeconds

https://wiki.bzz.ch/ Printed on 2026/02/14 06:46


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/8/docs/api/java/time/Period.html

2026/02/14 06:46 7/7 LUO8D - Java und die Zeit

Dann kdnnen wir die Methoden getSeconds() oder getNanoseconds() verwenden, um den Wert der
Zeiteinheiten zu bestimmen:

System.out.println(duration.getSeconds

Die Methode isNegative() kann verwendet werden, um zu Uberprifen, ob der Endzeitpunkt groRer ist
als der Startzeitpunkt:

boolean isNegative = duration.isNegative
Wir kdnnen auch ein Duration-Objekt auf der Grundlage mehrerer Zeiteinheiten erhalten, indem wir
die Methoden ofDays (), ofHours (), ofMillis (), ofMinutes(), ofNanos() oder ofSeconds ()

verwenden:

Duration fromDays Duration.ofDays
Duration fromMinutes Duration.ofMinutes

Eine Dauer kann mit toDays (), toHours (), toMillis() und toMinutes() in andere
Zeiteinheiten umgewandelt werden:

Llong stunden fromMinutes.toHours

Ein Dauerwert kann durch Methoden der Form plusX() oder minusX() erhdht oder verringert
werden, wobei X flr Tage, Stunden, Millis, Minuten, Nanos oder Sekunden stehen kann:

Duration fromSeconds Duration.ofSeconds
fromSeconds.plusSeconds // neu 120 Sekunden
fromSeconds.minusSeconds // neu 90 Sekunden

Es gibt noch viele weitere Funktionen die zur Verfugung
&3 stehen, eine Liste mit Beschreibung finden Sie im Java-API

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: !
https://wiki.bzz.ch/modul/archiv/im319/learningunits/lu08/lu08b-javaunddiezeit 3y

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319/learningunits/lu08/lu08b-javaunddiezeit

	LU08b - Java und die Zeit
	Einfache Datumswerte - LocalDate
	LocalDate erstellen
	LocalDate funktionen

	Einfache Zeitwerte - LocalTime
	LocalTime erstellen
	LocalTime funktionen

	Einfache Zeitdatumswerte - LocalDateTime
	LocalDateTime erstellen
	LocalDateTime funktionen

	Period
	Duration


