2026/02/11 14:15 1/3 LU04.A03: Minzenspiel

LUO4.A03: Munzenspiel
Spielregeln

i i Losen Sie die Aufgabe mit BlockPy oder Codingrooms

Laden Sie einen Screenshot ihres Blockly-Programms hoch.

1. Zu Beginn legen die Spieler einige Minzen (10 - 30) auf den Tisch.
2. Zwei Spieler nehmen nun abwechslungsweise eine, zwei oder drei Minzen vom Tisch.
3. Gewonnen hat der Spieler, der zuletzt Minzen vom Tisch genommen hat.

Ablauf

1. Erzeuge eine Zufallszahl fur die Anzahl Minzen

2. Lege den aktuellen Spieler = 1 fest

3. Solange Munzen auf dem Tisch liegen

.1. Zeige die Anzahl Munzen an

Der aktuelle Spieler gibt ein, wieviele Minzen er nimmt
. Subtrahier die Anzahl Munzen vom Stapel

.4. Lege den anderen Spieler als aktuellen Spieler fest

4. Gib den Sieger aus

w www
~ W N

Auftrag

Schreiben Sie ein Programm, um das Spiel zu spielen.
Ablauf

Willkommen zum Minzenspiel
Es sind noch 11 Minzen auf dem Stapel
Spieler 1 nimm 1-3 Minzen > 3

Es sind noch 8 Munzen auf dem Stapel
Spieler 2 nimm 1-3 Minzen > 7

Du darst hdchstens 3 Minzen nehmen
Es sind noch 8 Minzen auf dem Stapel
Spieler 2 nimm 1-3 Minzen > 2

Es sind noch 6 Munzen auf dem Stapel
Spieler 1 nimm 1-3 Minzen > 0
Du musst mindestens 1 Minze nehmen

BZZ - Modulwiki - https://wiki.bzz.ch/


https://think.cs.vt.edu/blockpy/blockpy/
https://www.codingrooms.com/compiler/python-block

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu04:aufgaben:muenzenspiel https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu04/aufgaben/muenzenspiel

Es sind noch 6 Minzen auf dem Stapel
Spieler 1 nimm 1-3 Minzen > 3

Es sind noch 3 Minzen auf dem Stapel
Spieler 2 nimm 1-3 Minzen > 3

Spieler 1 hat verloren
Bis bald

Hinweise
Zufallige Anzahl Miinzen

Zu Beginn des Programms wird eine zufallige Anzahl Minzen generiert. Dies geschieht mit den
Befehlen

random
coin total random. randint

1. import random ladt die Bibliothek zum Erzeugen von Zufallszahlen.
2. random.randint(n, m) erzeugt eine Zufallszahl zwischen n und m.

Sie brauchen das Ergebnis dieses Befehls nur in einer Variable zu speichern.
Aktueller Spieler

Die Spieler 1 und 2 ziehen abwechslungsweise. Fur die Anzeige des jeweils aktuellen Spielers,
bendtigen wir eine Variable. Diese Variable erhalt am Anfang den Wert 1, also ist Spieler 1 am Zug.

Hat der Spieler eine gultige Anzahl eingegeben, so wechselt der Spieler. Dazu rechnen wir
Aktueller Spieler = 3 - Aktueller Spieler.

e |st der aktuelle Spieler = 1, so ist das Resultat der Rechnung 2.
e |st der aktuelle Spieler = 2, so ist das Resultat der Rechnung 1.

Das Resultat wird in der Variable fur den aktuellen Spieler gespeichert.

Vorgehen

1. Variablen

1. Bestimmen Sie alle bendtigten Variablen mit Bezeichner (Name).
2. Geben Sie jeder Variable einen Initialwert.

https://wiki.bzz.ch/ Printed on 2026/02/11 14:15



2026/02/11 14:15 3/3 LU04.A03: Munzenspiel

2. Ein- / Ausgaben

Realisieren Sie alle Ein- und Ausgaben

3. Selektionen und Iterationen

Realisieren Sie schrittweise die Selektionen und Iterationen.

4. Ausprobieren

Spielen Sie das Spiel gegen sich selber oder einen Kollegen. Prifen Sie auch, wie das Programm auf
ungultige Zuge (z.B. 0 Munzen, 5 Munzen) reagiert.

Zeigt das Programm den Sieger korrekt an?

M319-D1F, M319-F3G

© Marcel Suter, Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/tag/m319-d1f?do=showtag&tag=M319-D1F
https://wiki.bzz.ch/tag/m319-f3g?do=showtag&tag=M319-F3G
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu04/aufgaben/muenzenspiel

	LU04.A03: Münzenspiel
	Spielregeln
	Ablauf

	Auftrag
	Ablauf
	Hinweise
	Zufällige Anzahl Münzen
	Aktueller Spieler


	Vorgehen
	1. Variablen
	2. Ein- / Ausgaben
	3. Selektionen und Iterationen
	4. Ausprobieren



