2026/02/03 15:32 1/11 LUOGa - Selektion

LUOGa - Selektion

Lernziele

e Die |dee einer Selektion kennen und wissen, wie man
ein Programm mit optionalen Operationen durch die
Verwendung von bedingten Anweisungen erstellt.

 Sich mit den in Selektionen haufig verwendeten
Vergleichs- und logischen Operatoren vertraut
machen.

* Die Reihenfolge der Ausfuhrung einer Selektion kennen
und wissen, dass das Parsen einer Selektion bei der
ersten Bedingung aufhort, deren Aussage als wahr
bewertet wird.

Einfuhrung

Unsere Programme sind bisher linear verlaufen. Mit anderen Worten, die Programme wurden von
oben nach unten ohne gréBere Uberraschungen oder bedingtes Verhalten ausgefiihrt. In der Regel
mochten wir jedoch bedingte Logik in unsere Programme einbauen. Damit meinen wir Funktionen, die
auf die eine oder andere Weise vom Zustand der Programmvariablen abhangig sind.

Um beispielsweise die Ausflihrung eines Programms auf der Grundlage von Benutzereingaben zu
verzweigen, mussen wir eine so genannte Selektion verwenden. Die einfachste Selektion sieht etwa
SO aus.

'Hello, world!'
True:
'This code is unavoidable!'

Hello, world!
This code is unavoidable!

Eine Selektion beginnt mit dem Schltsselwort if, gefolgt von einer Bedingung, die ausgewertet wird,
wenn die Selektion erreicht wird. Das Ergebnis der Auswertung ist ein boolescher Wert. Oben wurde
keine Auswertung vorgenommen. Stattdessen wurde in der bedingten Anweisung explizit ein
boolescher Wert (True) verwendet.

Auf die Bedingung folgt ein Block, der darunter eingeruckt ist. Der Quellcode innerhalb des Blocks
wird ausgefuhrt, wenn der Ausdruck innerhalb der Klammern den Wert True ergibt.

Schauen wir uns ein Beispiel an, bei dem wir in der bedingten Anweisung Zahlen vergleichen.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;8(212;8:3/28 modul:archiv:im319python:learningunits:lu06:lu06a-selektion https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu06/lu06a-selektion

14:07

number
number
'The number was greater than 10'

The number was greater than 10

Wenn der Ausdruck in der Selektion als wahr bewertet wird, wird die Ausfihrung des Programms zu
dem durch die Selektion definierten Block fortgesetzt. Im obigen Beispiel lautet die Bedingung ,wenn
die Zahl in der Variablen groBer als 10 ist“. Ist der Ausdruck hingegen falsch, wird die Anweisung
nach dem eingertckten Codeblock ausgefuhrt.

Code-Einruckung und Blockanweisungen

Ein Codeblock ist ein Abschnitt mit einer bestimmten Einriickungsebene von links.

Die meisten unserer Programme enthalten einen wiederkehrenden Ausschnitt def main():, der einen
Block einleitet, wobei der Code innerhalb der Funktion darunter eingerlckt ist.

Blocke definieren die Struktur eines Programms und seine Grenzen. Eine Selektion markiert ebenfalls
den Beginn eines neuen Codeblocks.

Look at the indentation below, which marks

the blocks
main(): #start block 1
number #inside block 1
number : #start block 2

‘This is greater than 5!’
#inside block 2

__hame_ __main_ '
main #outside block 1 and 2 but inside
the if block

Neben der Festlegung der Programmstruktur und -funktionalitdt haben Blockanweisungen auch
Auswirkungen auf die Lesbarkeit eines Programms. Code, der sich innerhalb eines Blocks befindet,
wird eingeruckt. So wird beispielsweise jeglicher Quellcode innerhalb des Blocks einer Selektion tiefer
eingeruckt als der if-Befehl, der die Selektion eingeleitet hat. Wenn der Block endet, endet auch die
Einrtckung.

Python hat explizite Richtlinien, wie Code eingerlckt werden sollte, die in den PEP 8 Richtlinien
nachgelesen werden kénnen. Sie lauten im Wesentlichen:

https://wiki.bzz.ch/ Printed on 2026/02/03 15:32

https://peps.python.org/pep-0008/

2026/02/03 15:32 3/11 LUOGa - Selektion

e Verwenden Sie 4 Leerzeichen pro Einrickungsebene.
e Verwenden Sie Leerzeichen anstelle von Tabulatoren. (PyCharm Ubersetzt ihren Tabulator
automatisch in 4 Leerzeichen)

Das folgende Beispiel ist falsch eingertckt und fuhrt zu einem Fehler.

number
number

Das folgende Beispiel ist korrekt eingertckt.

number
number

Unser Programmcode muss auch in den Ubungen immer richtig eingeriickt sein. Wenn die Einriickung
nicht korrekt ist, wird die Entwicklungsumgebung die Losung nicht akzeptieren und nicht ausfuhren.

Else und Else-If

else

Wenn der Ausdruck innerhalb der Klammern der bedingten Anweisung den Wert false ergibt, wird
die Ausfuhrung des Codes auf die Anweisung nach dem Einrtickungsblock verschoben. Dies ist nicht
immer erwinscht, und in der Regel wollen wir eine alternative Option flr den Fall schaffen, dass der
bedingte Ausdruck als falsch ausgewertet wird.

Dies kann mit Hilfe des else-Befehls geschehen, der zusammen mit dem if-Befehl verwendet wird.

number
number
"Your number is greater than
fivel'

'Your number is five or less!'

Your number is five or less!

Wenn flr eine Selektion ein else-Zweig angegeben wurde, wird der durch den else-Zweig definierte
Block flr den Fall ausgeflhrt, dass die Bedingung der Selektion falsch ist. Der else-Befehl steht in

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;8(212;8:3/28 modul:archiv:im319python:learningunits:lu06:lu06a-selektion https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu06/lu06a-selektion

14:07

der gleichen Zeile wie der durch den if-Befehl definierte Block.

elif

Bei mehreren Bedingungen verwenden wir den elif-Befehl. Der Befehl elif, kurz fur else if, ist wie
else, aber mit einer zusatzlichen Bedingung. elif folgt der if-Bedingung, und sie kann mehrmals
vorkommen.

number
number
'The number is one'
number
‘The given number is two'
number

'"The number must be three!'
'Something else!"’

The number must be three!

Lesen wir das obige Beispiel vor: 'Wenn die Zahl eins ist, dann drucke ,The number is one”, wenn die
Zahl zwei ist, dann drucke , The given number is two*“, wenn die Zahl drei ist, dann drucke , The
number must be three!”. Andernfalls drucke ,Something else!"'

Selektionen mit einer booleschen Variable

Der Wert, der zwischen den Klammern der bedingten Anweisung steht, sollte nach der Auswertung
vom Typ Boolean sein. Variablen vom Typ Boolean sind entweder True oder False

is it true = True
is it true):
'Pretty wild!'

Pretty wild!
Vergleichsoperatoren konnen auch auferhalb von Bedingungen verwendet werden. In diesen Fallen

wird der boolesche Wert, der sich aus dem Vergleich ergibt, zur spateren Verwendung in einer
booleschen Variablen gespeichert.

https://wiki.bzz.ch/ Printed on 2026/02/03 15:32

2026/02/03 15:32 5/11 LUOGa - Selektion

first
second
is greater = first second

Im obigen Beispiel enthalt die boolesche Variable is greater jetzt den booleschen Wert False. Wir
kénnen das vorherige Beispiel erweitern, indem wir eine Selektion hinzuflgen.

first
second
is less than = first < second

is less than
'l is less than 3!’

Der obige Code wurde bis zu dem Punkt ausgefuhrt, an dem
die Variablen des Programms erstellt und mit Werten belegt
wurden. Die Variable is less than hat den Wert True.
Der nachste Schritt in der Ausflhrung ist der Vergleich if
(is less than) - der Wert fur die Variable

is less than wird in ihrem Container gefunden, und das
Programm gibt schlief8lich aus:

1 is less than 3!

Der Modulo-Operator ist ein etwas weniger gebrauchlicher
Operator, der aber sehr praktisch ist, wenn man z. B. die
Teilbarkeit einer Zahl Uberprifen will. Das Symbol fur den
Modulo-Operator ist %.

ok remainder %
© remainder) # prints 1
% # prints 2
% # prints 3
% # prints 0
% # prints 1

Wenn wir wissen wollen, ob die vom Benutzer angegebene Zahl durch vierhundert teilbar ist, prifen
wir, ob der Rest Null ist, nachdem wir den Modulo der Zahl und vierhundert gebildet haben.

number = int(input
remainder number %

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2024/03/28
14:07

modul:archiv:im319python:learningunits:lu06:lu06a-selektion https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu06/lu06a-selektion

remainder 0
'"The number ' + str(number) + ' is
divisible by four hundred.'

'"The number ' + str(number) + is

not divisible by four hundred.'

Da das Modulo eine Operation wie andere Berechnungen ist, kann es Teil eines Ausdrucks in einer
Selektion sein.

number = int(input

number % 400 (0]
'"The number + str(number) + ' is
divisible by four hundred.'

'"The number ' + str(number) + ' is

not divisible by four hundred.'

Vergleichsoperatoren

Sie kennen die Vergleichsoperatoren bereits aus der LUO4c - Selektion

Operator|Die Bedingung ist erfiillt, wenn ...
== ... die beiden Werte gleich sind.
= ... die beiden Werte nicht gleich sind.

> ... der erste Wert grésser als der zweite Wert ist.
>= ... der erste Wert grosser oder gleich wie der zweite Wert ist.
< ... der erste Wert kleiner als der zweite Wert ist.
<= ... der erste Wert kleiner oder gleich wie der zweite Wert ist.

Logische Operatoren

Der Ausdruck einer bedingten Aussage kann aus mehreren Teilen bestehen, in denen die logischen
Operatoren and, or und not verwendet werden.

e Ein Ausdruck, der aus zwei Ausdrucken besteht, die mit dem Und-Operator kombiniert werden,
ist wahr, wenn beide kombinierten Ausdricke wahr sind.

e Ein Ausdruck, der aus zwei Ausdricken besteht, die mit dem Oder-Operator kombiniert werden,
ist wahr, wenn entweder einer oder beide der kombinierten Ausdrucke als wahr gewertet
werden.

https://wiki.bzz.ch/ Printed on 2026/02/03 15:32

https://wiki.bzz.ch/modul/m319python/learningunits/lu04/lu04c-selektion

2026/02/03 15:32 7/11 LUOGa - Selektion

e Logische Operatoren werden nicht verwendet, um den booleschen Wert von wahr nach falsch
oder von falsch nach wahr zu andern.

Im nachsten Beispiel kombinieren wir zwei einzelne Bedingungen mit and. Der Code wird verwendet,
um zu prufen, ob die Zahl in der Variablen groRer oder gleich 5 und kleiner oder gleich 10 ist. Mit
anderen Worten, ob sie innerhalb des Bereichs von 5-10 liegt:

'Is the number within the range 5-10:

number

number number
'Tt is! :)'

"It is not : ('

Is the number within the range 5-10:
It is! :)

Im nachsten Schritt werden zwei Bedingungen mit dem or-Operator angegeben: Ist die Zahl kleiner
als Null oder groer als 100. Die Bedingung ist erfullt, wenn die Zahl eine der beiden Bedingungen
erfallt:

'Is the number less than 0 or greater

than 100"
number
number number
"It is! :)'
"It is not : ('

Is the number less than 0 or greater than 100
It is! @)

In diesem Beispiel vertauschen wir das Ergebnis des Ausdrucks Zahl > 4 mit not, d. h. dem not-
Operator. Der not-Operator ist so geschrieben, dass der zu kippende Ausdruck in Klammern
eingeschlossen ist und der not-Operator vor den Klammern steht.

number

number
‘The number is not greater than
4.I

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2024/03/28
14:07

modul:archiv:im319python:learningunits:lu06:lu06a-selektion https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu06/lu06a-selektion

'The number is greater than or
equal to 4.

The number is greater than or equal to 4.

Ausfuhrungsreihenfolge von Selektionen

Die Vergleiche werden von oben nach unten ausgeflhrt. Wenn die Ausfihrung ein if erreicht, deren
Bedingung wabhr ist, wird ihr Block ausgefuhrt und der Vergleich beendet.

number

number
'The number is zero.'
number :
'The number is greater than zero.'
number :
‘The number is greater than two.'

'"The number is less than zero.'

The number is greater than zero.

- Im obigen Beispiel wird die Zeichenfolge ,, The number is
| greater than zero.” ausgegeben, auch wenn die Bedingung
&% Zahl > 2 wahrist. Der Vergleich stoppt bei der ersten
Bedingung, die als wahr ausgewertet wird.

Probleme mit der Ausfiihrungsreihenfolge umgehen

Machen wir uns mit der Ausfuhrungsreihenfolge von Selektionen anhand einer klassischen
Programmierubung vertraut.

Schreiben Sie ein Programm, das den Benutzer auffordert, eine Zahl zwischen eins und hundert
einzugeben, und das diese Zahl ausgibt. Wenn die Zahl durch drei teilbar ist, gibst du statt der Zahl
»Fizz" aus. Wenn die Zahl durch funf teilbar ist, dann drucke ,Buzz“ anstelle der Zahl. Wenn die Zahl
sowohl durch drei als auch durch funf teilbar ist, dann drucke ,FizzBuzz" anstelle der Zahl.'

https://wiki.bzz.ch/ Printed on 2026/02/03 15:32

2026/02/03 15:32 9/11 LUOGa - Selektion

Der Programmierer beginnt mit dem Ldsen der Aufgabe, indem er die Aufgabenbeschreibung liest und
den Code entsprechend der Beschreibung schreibt. Die Bedingungen fur die Ausfuhrung werden in
der Beschreibung in einer bestimmten Reihenfolge angegeben, und die anfangliche Struktur fur das
Programm wird auf der Grundlage dieser Reihenfolge gebildet. Die Struktur wird anhand der
folgenden Schritte gebildet:

Schreiben Sie ein Programm, das den Benutzer zur Eingabe einer Zahl auffordert und diese Zahl
ausgibt.

Wenn die Zahl durch drei teilbar ist, wird anstelle der Zahl , Fizz" gedruckt.

Wenn die Zahl durch funf teilbar ist, dann drucke ,,Buzz"“ anstelle der Zahl.

Wenn die Zahl sowohl durch drei als auch durch funf teilbar ist, wird anstelle der Zahl
~FizzBuzz" gedruckt.

Wenn-Bedingungen lassen sich leicht mit i f-, elif-, else- Anweisungen umsetzen. Der
nachstehende Code wurde auf der Grundlage der obigen Schritte geschrieben, funktioniert aber nicht
richtig, wie man am Beispiel sehen kann.

number = int(input

number %
'Fizz'
number %
'Buzz'
number % number %
'FizzBuzz'
number
User: <3>
Fizz
User: <4>
4
User: <5>
Buzz

User: <15>
Fizz

Das Problem mit dem bisherigen Ansatz ist, dass das Parsen von bedingten Anweisungen bei
der ersten Bedingung, die wahr ist, aufhort. So wird z. B. bei dem Wert 15 die Zeichenfolge
.Fizz" ausgegeben, da die Zahl durch drei teilbar ist (15 % 3 == 0).

Ein Ansatz fur die Entwicklung dieses Gedankengangs ware, zunachst die anspruchsvollste
Bedingung zu finden und zu implementieren. Danach wirden wir die anderen Bedingungen
implementieren. Im obigen Beispiel erfordert die Bedingung ,wenn die Zahl sowohl durch drei als
auch durch funf teilbar ist”, dass zwei Dinge geschehen. Der Gedankengang ware nun folgender:

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2024/03/28
14:07

modul:archiv:im319python:learningunits:lu06:lu06a-selektion https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu06/lu06a-selektion

1. Schreiben Sie ein Programm, das die Eingaben des Benutzers liest.

2. Wenn die Zahl sowohl durch drei als auch durch funf teilbar ist, dann gib ,FizzBuzz" anstelle der
Zahl aus.

3. Wenn die Zahl durch drei teilbar ist, dann drucke ,Fizz" anstelle der Zahl.

Wenn die Zahl durch funf teilbar ist, wird anstelle der Zahl ,Buzz” gedruckt.

5. Ansonsten gibt das Programm die vom Benutzer angegebene Zahl aus.

o

Jetzt scheint das Problem gel6st zu sein:

number = int(input

number % number %
'"FizzBuzz'
number %
'Fizz'
number %
'Buzz'
number
User: <3>
Fizz
User: <4>
4
User: <5>
Buzz

User: <15>
FizzBuzz

M319-F3G, M319-F3F, M319-F3E

© Kevin Maurizi

Diese Theorieseite ist eine Ubersetzte und Theorieseite Aufgabe von Scott Morgan, verwendet unter
CC BY NC SA.

https://wiki.bzz.ch/ Printed on 2026/02/03 15:32

https://wiki.bzz.ch/tag/m319-f3g?do=showtag&tag=M319-F3G
https://wiki.bzz.ch/tag/m319-f3f?do=showtag&tag=M319-F3F
https://wiki.bzz.ch/tag/m319-f3e?do=showtag&tag=M319-F3E
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://scott3142.uk/

2026/02/03 15:32 11/11 LUOGa - Selektion

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/im319python/learningunits/lu06/lu06a-sel
ektion

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu06/lu06a-selektion
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu06/lu06a-selektion

	LU06a - Selektion
	Einführung
	Code-Einrückung und Blockanweisungen
	Else und Else-If
	else
	elif

	Selektionen mit einer booleschen Variable
	Vergleichsoperatoren
	Logische Operatoren
	Ausführungsreihenfolge von Selektionen
	Probleme mit der Ausführungsreihenfolge umgehen

