2026/02/03 20:35 1/6 LUO7a - Erweiterung der if-Anweisung

LUO7a - Erweiterung der if-Anweisung

If..In.. Anweisung

Eine if <keyword> in <list>:-Anweisung kann verwendet werden um:

1. Zu Uberprifen ob das <keyword> bestandteil eines string ist

‘aul’ ‘grault’': # Truthy
1 yes 1

yes
2. Zu uberprifen ob das <keyword> dem Element in einer Collection entspricht

‘baz’ ‘foo', 'bar', 'baz']: # Falsy
‘yes

yes

Bedingte Ausdrucke (Pythons ternarer Operator)

Python unterstitzt eine zusatzliche Entscheidungseinheit, den sogenannten bedingten Ausdruck. (An
verschiedenen Stellen in der Python-Dokumentation wird er auch als bedingter Operator oder ternarer
Operator bezeichnet.)

In seiner einfachsten Form sieht die Syntax des bedingten Ausdrucks wie folgt aus:

exprl conditional expr expr2

Sie unterscheidet sich von den bisher gezeigten Formen der if-Anweisung, da sie keine
Kontrollstruktur ist, die den Ablauf der Programmausfuhrung steuert. Sie verhalt sich eher wie ein
Operator, der einen Ausdruck definiert. Im obigen Beispiel wird <conditional_expr> zuerst
ausgewertet. Wenn er wahr ist, wird der Ausdruck als <exprl> ausgewertet. Wenn er falsch ist, wird
der Ausdruck zu <expr2> ausgewertet.

Beachten Sie die nicht offensichtliche Reihenfolge: Der mittlere Ausdruck wird zuerst ausgewertet,
und auf der Grundlage dieses Ergebnisses wird einer der Ausdrucke an den Enden zuruckgegeben.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/03/28
14:07

modul:archiv:im319python:learningunits:lu07:lu07a-erweiterteif https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

Hier sind einige Beispiele, die hoffentlich zur Verdeutlichung beitragen:

raining = False
"Let's go to the"
raining ‘library

'beach'

Let's go to the beach

raining = True
"Let's go to the"
raining "library

'"beach'

Let's go to the library

age

S 'minor' "adult'

S

age

minor

' 'foo', 'bar', 'baz'

qux

yes
1 nol

no

Hinweis: Der bedingte Ausdruck in Python ahnelt der Sy
<conditional_expr> ? <exprl> : <expr2> Syntax, die vo

ntax
n

vielen anderen Sprachen verwendet wird - C, Perl und Java,
um nur einige zu nennen. Tatsachlich wird der ?: Operator in

diesen Sprachen gemeinhin als ternarer Operator
bezeichnet, was wahrscheinlich der Grund dafur ist, dass

Operator bezeichnet wird.

Pythons bedingter Ausdruck manchmal als ternarer Python-

Sie kénnen in PEP 308 sehen, dass der <conditional_expr> ?
<exprl> : <expr2> fur Python in Betracht gezogen, aber

letztlich zugunsten der oben gezeigten Syntax verworfen
wurde.

Ein haufiger Verwendungszweck des bedingten Ausdrucks ist die Auswahl der Variablenzuweisung.

Nehmen wir zum Beispiel an, Sie mochten die groBere von zwei Zahlen ermitteln.
eine eingebaute Funktion, max(), die genau das tut (und mehr), die Sie verwende
nehmen wir an, Sie wollen lhren eigenen Code von Grund auf schreiben.

Naturlich gibt es
n konnten. Aber

https://wiki.bzz.ch/

Printed on 2026/02/03 20:35



2026/02/03 20:35 3/6 LUO7a - Erweiterung der if-Anweisung

Sie kénnten eine standardmafige if-Anweisung mit einer else-Klausel verwenden:

Aber ein bedingter Ausdruck ist kirzer und wohl auch besser lesbar:

Denken Sie daran, dass sich der bedingte Ausdruck syntaktisch wie ein Ausdruck verhalt. Er kann als
Teil eines langeren Ausdrucks verwendet werden. Der bedingte Ausdruck hat einen niedrigeren
Vorrang als praktisch alle anderen Operatoren, so dass Klammern erforderlich sind, um ihn selbst zu
gruppieren.

Im folgenden Beispiel bindet der Operator + starker als der bedingte Ausdruck, so dass 1 + x undy +
2 zuerst ausgewertet werden, gefolgt von dem bedingten Ausdruck. Die Klammern im zweiten Fall
sind unn6tig und andern das Ergebnis nicht:

X

y

z + X X =y y +
z

42

z + X X =y y +
z

42

Wenn Sie méchten, dass der bedingte Ausdruck zuerst ausgewertet wird, mussen Sie ihn mit
gruppierenden Klammern umgeben. Im nachsten Beispiel wird (x if x > y else y) zuerst
ausgewertet. Das Ergebnis ist y, das 40 ist, also wird zmit 1 + 40 + 2 = 43 belegt:

z + (x if x >y y) +

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/03/28
14:07

modul:archiv:im319python:learningunits:lu07:lu07a-erweiterteif https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

43

Wenn Sie einen bedingten Ausdruck als Teil eines groReren
Ausdrucks verwenden, ist es wahrscheinlich eine gute Idee,

£ gruppierende Klammern zur Verdeutlichung zu verwenden,
auch wenn sie nicht bendtigt werden.

Einzeilige if-Anweisungen

Es ist Ublich, if <expr>in eine Zeile und <statement> eingeruckt in die folgende Zeile zu schreiben,
etwa so:

expr=:
statement

Es ist jedoch zulassig, eine komplette if-Anweisung in eine Zeile zu schreiben. Die folgende Anweisung
ist funktional gleichwertig mit dem obigen Beispiel:

expr=: statement

Es kann sogar mehr als ein <statement> in der gleichen Zeile stehen, getrennt durch Semikolons:

expr=: <statement 1 statement 2
statement n

Das Semikolon, das die <statements> trennt, hat eine héhere Prioritat als der Doppelpunkt nach
<expr> - im Computerjargon sagt man, das Semikolon bindet fester als der Doppelpunkt. Die
<statements> werden also als eine Folge von Anweisungen behandelt, und entweder werden alle
ausgeflhrt, oder keine:

https://wiki.bzz.ch/ Printed on 2026/02/03 20:35



2026/02/03 20:35 5/6 LUO7a - Erweiterung der if-Anweisung

X : ‘foo' ‘bar
'baz'’
X : "qux' "quux’
‘corge' ‘grault'’
qux
quux
X
X : 'foo' ‘bar'
'baz'
X : ‘qux’ "quux'
: ‘corge' ‘grault'’
corge
grault

- Obwohl all dies funktioniert und der Interpreter es zulasst,
/1. wird im Allgemeinen davon abgeraten, da es zu einer
&% schlechten Lesbarkeit fihrt, insbesondere bei komplexen if-
Anweisungen. PEP 8 rat ausdrucklich davon ab.

Wie Ublich ist es eine Frage des Geschmacks. Die meisten Leute wurden das folgende Beispiel optisch
ansprechender und auf den ersten Blick leichter zu verstehen finden als das obige Beispiel:

'foo'
"bar'
'baz'

Iquxl
"quux’

‘corge'
‘grault’

corge

grault

Wenn eine if-Anweisung jedoch einfach genug ist, kann es sinnvoll sein, alles in eine Zeile zu packen.
So etwas wurde wahrscheinlich niemanden zu sehr aufregen:

BZZ - Modulwiki - https://wiki.bzz.ch/



Last

5832;8:3/28 modul:archiv:im319python:learningunits:lu07:lu07a-erweiterteif https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

14:07

debugging = True # Set to True to turn
debugging on.

debugging: "About to call function
foo()'
foo

M319-F1G, M319-F3G

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/im319python/learningunits/lu07/lu07a-erweiterteif b =. ! .

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 20:35


https://wiki.bzz.ch/tag/m319-f1g?do=showtag&tag=M319-F1G
https://wiki.bzz.ch/tag/m319-f3g?do=showtag&tag=M319-F3G
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

	LU07a - Erweiterung der if-Anweisung
	If..In.. Anweisung
	Bedingte Ausdrücke (Pythons ternärer Operator)
	Einzeilige if-Anweisungen


