
2026/02/03 20:35 1/6 LU07a - Erweiterung der if-Anweisung

BZZ - Modulwiki - https://wiki.bzz.ch/

LU07a - Erweiterung der if-Anweisung

If..In.. Anweisung

Eine if <keyword> in <list>:-Anweisung kann verwendet werden um:

1. Zu überprüfen ob das <keyword> bestandteil eines string ist

if 'aul' in 'grault': # Truthy
 print('yes')

yes

2. Zu überprüfen ob das <keyword> dem Element in einer Collection entspricht

if 'baz' in ['foo', 'bar', 'baz']: # Falsy
 print('yes')

yes

Bedingte Ausdrücke (Pythons ternärer Operator)

Python unterstützt eine zusätzliche Entscheidungseinheit, den sogenannten bedingten Ausdruck. (An
verschiedenen Stellen in der Python-Dokumentation wird er auch als bedingter Operator oder ternärer
Operator bezeichnet.)

In seiner einfachsten Form sieht die Syntax des bedingten Ausdrucks wie folgt aus:

<expr1> if <conditional_expr> else <expr2>

Sie unterscheidet sich von den bisher gezeigten Formen der if-Anweisung, da sie keine
Kontrollstruktur ist, die den Ablauf der Programmausführung steuert. Sie verhält sich eher wie ein
Operator, der einen Ausdruck definiert. Im obigen Beispiel wird <conditional_expr> zuerst
ausgewertet. Wenn er wahr ist, wird der Ausdruck als <expr1> ausgewertet. Wenn er falsch ist, wird
der Ausdruck zu <expr2> ausgewertet.

Beachten Sie die nicht offensichtliche Reihenfolge: Der mittlere Ausdruck wird zuerst ausgewertet,
und auf der Grundlage dieses Ergebnisses wird einer der Ausdrücke an den Enden zurückgegeben.

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu07:lu07a-erweiterteif https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

https://wiki.bzz.ch/ Printed on 2026/02/03 20:35

Hier sind einige Beispiele, die hoffentlich zur Verdeutlichung beitragen:

raining = False
print("Let's go to the", 'beach' if not
raining else 'library')

Let's go to the beach

raining = True
print("Let's go to the", 'beach' if not
raining else 'library')

Let's go to the library

age = 12
s = 'minor' if age < 21 else 'adult'
print(s)

minor

'yes' if ('qux' in ['foo', 'bar', 'baz'])
else 'no'

no

Hinweis: Der bedingte Ausdruck in Python ähnelt der Syntax
<conditional_expr> ? <expr1> : <expr2> Syntax, die von
vielen anderen Sprachen verwendet wird - C, Perl und Java,
um nur einige zu nennen. Tatsächlich wird der ?: Operator in
diesen Sprachen gemeinhin als ternärer Operator
bezeichnet, was wahrscheinlich der Grund dafür ist, dass
Pythons bedingter Ausdruck manchmal als ternärer Python-
Operator bezeichnet wird.

Sie können in PEP 308 sehen, dass der <conditional_expr> ?
<expr1> : <expr2> für Python in Betracht gezogen, aber
letztlich zugunsten der oben gezeigten Syntax verworfen
wurde.

Ein häufiger Verwendungszweck des bedingten Ausdrucks ist die Auswahl der Variablenzuweisung.
Nehmen wir zum Beispiel an, Sie möchten die größere von zwei Zahlen ermitteln. Natürlich gibt es
eine eingebaute Funktion, max(), die genau das tut (und mehr), die Sie verwenden könnten. Aber
nehmen wir an, Sie wollen Ihren eigenen Code von Grund auf schreiben.

2026/02/03 20:35 3/6 LU07a - Erweiterung der if-Anweisung

BZZ - Modulwiki - https://wiki.bzz.ch/

Sie könnten eine standardmäßige if-Anweisung mit einer else-Klausel verwenden:

if a > b:
 m = a
 else:
 m = b

Aber ein bedingter Ausdruck ist kürzer und wohl auch besser lesbar:

m = a if a > b else b

Denken Sie daran, dass sich der bedingte Ausdruck syntaktisch wie ein Ausdruck verhält. Er kann als
Teil eines längeren Ausdrucks verwendet werden. Der bedingte Ausdruck hat einen niedrigeren
Vorrang als praktisch alle anderen Operatoren, so dass Klammern erforderlich sind, um ihn selbst zu
gruppieren.

Im folgenden Beispiel bindet der Operator + stärker als der bedingte Ausdruck, so dass 1 + x und y +
2 zuerst ausgewertet werden, gefolgt von dem bedingten Ausdruck. Die Klammern im zweiten Fall
sind unnötig und ändern das Ergebnis nicht:

x = 40
y = 40

z = 1 + x if x > y else y + 2
print(z)

42

z = (1 + x) if x > y else (y + 2)
print(z)

42

Wenn Sie möchten, dass der bedingte Ausdruck zuerst ausgewertet wird, müssen Sie ihn mit
gruppierenden Klammern umgeben. Im nächsten Beispiel wird (x if x > y else y) zuerst
ausgewertet. Das Ergebnis ist y, das 40 ist, also wird z mit 1 + 40 + 2 = 43 belegt:

x = 40
y = 40

z = 1 + (x if x > y else y) + 2

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu07:lu07a-erweiterteif https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

https://wiki.bzz.ch/ Printed on 2026/02/03 20:35

print(z)

43

Wenn Sie einen bedingten Ausdruck als Teil eines größeren
Ausdrucks verwenden, ist es wahrscheinlich eine gute Idee,
gruppierende Klammern zur Verdeutlichung zu verwenden,
auch wenn sie nicht benötigt werden.

Einzeilige if-Anweisungen

Es ist üblich, if <expr> in eine Zeile und <statement> eingerückt in die folgende Zeile zu schreiben,
etwa so:

if <expr>:
 <statement>

Es ist jedoch zulässig, eine komplette if-Anweisung in eine Zeile zu schreiben. Die folgende Anweisung
ist funktional gleichwertig mit dem obigen Beispiel:

if <expr>: <statement>

Es kann sogar mehr als ein <statement> in der gleichen Zeile stehen, getrennt durch Semikolons:

if <expr>: <statement_1>; <statement_2>; ...;
<statement_n>

Das Semikolon, das die <statements> trennt, hat eine höhere Priorität als der Doppelpunkt nach
<expr> - im Computerjargon sagt man, das Semikolon bindet fester als der Doppelpunkt. Die
<statements> werden also als eine Folge von Anweisungen behandelt, und entweder werden alle
ausgeführt, oder keine:

x = 2

2026/02/03 20:35 5/6 LU07a - Erweiterung der if-Anweisung

BZZ - Modulwiki - https://wiki.bzz.ch/

if x == 1: print('foo'); print('bar');
print('baz')
elif x == 2: print('qux'); print('quux')
else: print('corge'); print('grault')

qux
quux

x = 3
if x == 1: print('foo'); print('bar');
print('baz')
elif x == 2: print('qux'); print('quux')
else: print('corge'); print('grault')

corge
grault

Obwohl all dies funktioniert und der Interpreter es zulässt,
wird im Allgemeinen davon abgeraten, da es zu einer
schlechten Lesbarkeit führt, insbesondere bei komplexen if-
Anweisungen. PEP 8 rät ausdrücklich davon ab.

Wie üblich ist es eine Frage des Geschmacks. Die meisten Leute würden das folgende Beispiel optisch
ansprechender und auf den ersten Blick leichter zu verstehen finden als das obige Beispiel:

x = 3
if x == 1:
 print('foo')
 print('bar')
 print('baz')
elif x == 2:
 print('qux')
 print('quux')
else:
 print('corge')
 print('grault')

corge
grault

Wenn eine if-Anweisung jedoch einfach genug ist, kann es sinnvoll sein, alles in eine Zeile zu packen.
So etwas würde wahrscheinlich niemanden zu sehr aufregen:

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu07:lu07a-erweiterteif https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

https://wiki.bzz.ch/ Printed on 2026/02/03 20:35

debugging = True # Set to True to turn
debugging on.

 .
 .
 .

if debugging: print('About to call function
foo()')
foo()

M319-F1G, M319-F3G

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/tag/m319-f1g?do=showtag&tag=M319-F1G
https://wiki.bzz.ch/tag/m319-f3g?do=showtag&tag=M319-F3G
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu07/lu07a-erweiterteif

	LU07a - Erweiterung der if-Anweisung
	If..In.. Anweisung
	Bedingte Ausdrücke (Pythons ternärer Operator)
	Einzeilige if-Anweisungen

