2026/02/03 07:16 1/8 LUO9a - Funktionen

LUO9a - Funktionen

Sinn von Funktionen

Wieso soll man Uberhaupt ein Programm in Funktionen aufteilen? Zunachst bedeutet das schreiben
der Funktion scheinbar einen Mehraufwand. Der Grund wird offensichtlich, wenn man ein wenig weiter
schaut.

Wiederhole Dich nicht (DRY)

Das DRY-Prinzip lautet: Don't repeat yourself! Jedesmal wenn Sie den gleichen Code mehrfach
schreiben, erhéht sich das Risiko von Fehlern. Angenommen Sie haben in lhrem Programm den
gleichen Codeteil 5x geschrieben. Nun stellen Sie fest, dass ein Fehler in diesem Codeteil ist oder Sie
wollen etwas erganzen. So ist die Gefahr gross, dass Sie die Korrektur 4x vornehmen und die letzte
Stelle vergessen.

Daher wird alles, was Sie mehrfach bendtigen, in eine Funktion gepackt.

Teilaufgaben erhohen die Ubersicht

Es ist einfacher ein Programm zu verstehen, wenn es in viele, klar definierte Teilaufgaben unterteilt
ist. Ein Sourcecode mit mehreren hundert Zeilen an einem Stick, ist extrem schwer zu lesen.

Wartung

Nachdem ein Programm geschrieben wurde, ist es oftmals jahrelang im Einsatz. Wahrend dieser Zeit
mussen Fehler korrigiert und weitere Funktionen eingebaut werden. Durch die Abgrenzung von
Teilaufgaben wird das Programm Ubersichtlicher. Es ist auch Jahre spater viel einfacher, Anderungen
vorzunehmen.

Recycling
Funktionen kénnen sehr einfach wiederverwendet werden. Sie missen also nicht jedes mal das ganze

Programm neu erfinden. Vielmehr kdnnen sie Teile aus bestehenden Programmen Ubernehmen.

Beispielsweise stehen in Python Dutzende von Bibliotheken mit vorgefertigten Funktionen zur
Verfligung. Diese Funktiomnen hat ein anderer Softwareentwickler erstellt und wir kbnnen Sie nun
nutzen. Damit ersparen wir uns viele Stunden Arbeit.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2024/03/28
14:07

Vorgehen

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

Gedankenspiel: Auftrag einem Mitarbeiter erteilen

Sie wollen einem Kollegen den Auftrag erteilen, ihnen einen Kaffee aus dem
Automaten zu holen. Dieser Kollege weiss, wo der Automat steht und wie man
den Kaffeeautomaten bedient.

e Was mussen sie dem Kollegen alles mitteilen bzw. mitgeben?
» Was wollen sie erhalten, wenn der Auftrag erledigt ist?

Losungsidee

Was muss ich dem Kollegen mitteilen bzw.
mitgeben?

e Ob ich einen Kaffee oder einen Espresso
mochte.

e Ob ich Rahm und/oder Zucker mdchte.

e Das Geld fur den Automaten.

e Meine Kaffeetasse.

Was will ich erhalten?

* Meine Kaffeetasse mit dem gewunschten
Kaffee drin.

Fassen wir das in Pseudocode zusammen kdnnte der Auftrag in etwa so
aussehen:

money = 4.50

size = "Espresso"
cream = False
sugar = True

cup = Cup()

coffee =
colleague.bring coffee(money, size,
cream, sugar, cup)

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

2026/02/03 07:16 3/8 LUO9a - Funktionen

Funktion realisieren

Nun gehen Sie daran, die Funktion zu realisieren. Dabei empfiehlt es sich, gezielt vorzugehen:

1. Funktionsblock definieren
2. Dokumentationszeichenkette (docstring)
3. Logik programmieren

1. Funktionsblock definieren
Bezeichner der Funktion definieren

Als ersten Schritt Gberlegen Sie sich, welche Teilaufgabe diese Funktion erledigen soll. Diese
Teilaufgabe muss sich in einem kurzen Satz pragnant umschreiben lassen. Unklare oder schwammig
definierte Teilaufgaben fuhren in der Regel zu schlechten Funktionen.

e Vermeiden Sie Fullworter wie Ding, etwas, machen, ...
¢ Eine Methode hat genau eine Aufgabe = Beschreibungen mit und bzw. oder vermeiden.

Aus der Definition der Aufgabe lasst sich auch ein sinnvoller Name fir die Funktion ableiten.

Beispiele:

e Beschreibung: Die Methode gibt einen String an der aktuellen Cursorposition aus.
o Name: put string

e Beschreibung: Die Methode prift, ob die Eingabe des Benutzers eine Zahl ist.
o Name: is_number

Aus dem Namen der Funktion soll sich also auch der Zweck der Funktion herleiten lassen (Sprechend
sein). Funktionsnamen sind klein geschrieben. Handelt es sich um mehr als ein Wort, so ist die
snake_case_schreibweise angebracht. Jede Funktionsdefinition beginnt mit dem Wort def um Python
anzuzeigen, dass eine neue Funktion definiert wird.

put string

Parameter festlegen

Zur Schnittstelle gehdren auch die Parameter/Argumente, welche der Aufrufer an die Funktion weiter
gibt. Jeder Parameter benétigt einen einmaligen Bezeichner

check login(username, password): # Korrekte Bezeichner

check name_identical(name, name): # fuhrt zu einem Fehler, da die

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

Parameter identische Bezeichner haben

Zu jedem Paramter in der Schnittstelle wird innerhalb der Funktion automatisch eine lokale Variable
deklariert. Im Beispiel check login stehen also innerhalb der Methode die Referenzvariablen
username und password zur Verfugung.

Beim Aufruf der Funktion gibt der Aufrufer die entsprechenden Werte fir diese Variablen mit. Diese
Werte werden automatisch in die entsprechenden lokalen Variablen gespeichert.

Das ist die Codezeile mit def, dem Bezeichner und eventuellen (Parameter/n) abgeschlossen mit
einem :

is number (number):

Alles was jetzt in die Funktion gehdrt muss identisch
. eingeruckt sein. Normalerweise werden dafur 4 Leerzeichen
© verwendet.

2. Dokumentationszeichenkette (docstring)

Nun kommt der Kommentarblock mit den Angaben zur Funktion. In vielen Entwicklungswerkzeugen
wird ein Teil dieses Kommentarblocks automatisch erzeugt. Erstellen Sie dazu drei Anfuhrungzeichen
», unterhalb der Funktionsdeklaration und dricken Sie enter

is big(number):

:param number:
:return:

Erganzen Sie nun den generierten Docstring mit einer aussagekraftigen Beschreibung und der
Beschreibung der Parameter und des Return-Wertes. Falls sie keinen Return-Wert geplant haben,
schreiben Sie None hinter : return:

is big(number):

Checks if a given number is a big number

:param number (int): the number to check

:return (bool): True or False depending on the size of the number

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

https://wiki.bzz.ch/howto/pycharm/docstring

2026/02/03 07:16 5/8 LUO9a - Funktionen

say hello
Just says 'Hello'
:return: None

multiply(factorl, factor2):

Multiplies the two numbers factorl * factor2

:param factorl (float): the first number

:param factor2 (float): the second number

:return product (float): product of the multiplication

) Kénnen Sie die docst rings nicht automatisch erzeugen,
folgen Sie dieser Anleitung.

Weitere Erganzungen zu den Kommentaren finden Sie in PEP
& 257 oder in den Coding-Guidelines des BZZ

3. Logik programmieren

Zuletzt programmieren Sie die Logik der Funktion. Betrachten Sie jede Methode wie ein
eigenstandiges kleines Programm, mit:

¢ Variablen
e Anweisungen
e Returnwert

is big(number):

Checks if a given number is a big number

:param number (int): the number to check

:return (bool): True or False depending on the size of the number

threshold 1000000

number threshold:
True

False

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/howto/pycharm/docstring
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://wiki.bzz.ch/howto/codingstandards/04-kommentare

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

say hello
Just says 'Hello'
:return: None

'Hello'

multiply(factorl, factor2
Multiplies the two numbers factorl * factor2
:param factorl (float): the first number
:param factor2 (float): the second number
:return product (float): product of the multiplication
product factorl * factor2
product

Methoden aufrufen

Rufen wir die Funktion nun auf, so missen wir darauf achten, dass die Funktion vor dem Aufruf
deklariert (geschrieben) ist.

Beispiel:

is big(number):

Checks if a given number is a big number

:param number (int): the number to check

:return (bool): True or False depends on
the size of the number

threshold 1000000

number threshold:

True
False
main
is it = is big(123
is it
__nhame___ ' _main_ ':

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

2026/02/03 07:16 7/8

LUO9a - Funktionen

main

False

Hinweis: In Python sollte die Funktionsdefinition immer vor
dem Funktionsaufruf stehen. Andernfalls erhalten wir einen
Fehler. Zum Beispiel:

main
is it = is big
is it
__hame ' main_ ':
main

is big(number):

i_!_L Checks if a given number is a big
number

:param number (int): the number to
check

:return (bool): True or False
depends on the size of the number

threshold

number threshold:
True

False

NameError: name 'is_big' is not defined.

M319-F2G, M319-F2F, M319-F2E

© Kevin Maurizi

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/tag/m319-f2g?do=showtag&tag=M319-F2G
https://wiki.bzz.ch/tag/m319-f2f?do=showtag&tag=M319-F2F
https://wiki.bzz.ch/tag/m319-f2e?do=showtag&tag=M319-F2E
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

	LU09a - Funktionen
	Sinn von Funktionen
	Wiederhole Dich nicht (DRY)
	Teilaufgaben erhöhen die Übersicht
	Wartung
	Recycling

	Vorgehen
	Gedankenspiel: Auftrag einem Mitarbeiter erteilen
	Lösungsidee

	Funktion realisieren
	1. Funktionsblock definieren
	Bezeichner der Funktion definieren
	Beispiele:

	Parameter festlegen

	2. Dokumentationszeichenkette (docstring)
	3. Logik programmieren

	Methoden aufrufen

