
2026/02/03 07:16 1/8 LU09a - Funktionen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU09a - Funktionen

Sinn von Funktionen

Wieso soll man überhaupt ein Programm in Funktionen aufteilen? Zunächst bedeutet das schreiben
der Funktion scheinbar einen Mehraufwand. Der Grund wird offensichtlich, wenn man ein wenig weiter
schaut.

Wiederhole Dich nicht (DRY)

Das DRY-Prinzip lautet: Don't repeat yourself! Jedesmal wenn Sie den gleichen Code mehrfach
schreiben, erhöht sich das Risiko von Fehlern. Angenommen Sie haben in Ihrem Programm den
gleichen Codeteil 5x geschrieben. Nun stellen Sie fest, dass ein Fehler in diesem Codeteil ist oder Sie
wollen etwas ergänzen. So ist die Gefahr gross, dass Sie die Korrektur 4x vornehmen und die letzte
Stelle vergessen.

Daher wird alles, was Sie mehrfach benötigen, in eine Funktion gepackt.

Teilaufgaben erhöhen die Übersicht

Es ist einfacher ein Programm zu verstehen, wenn es in viele, klar definierte Teilaufgaben unterteilt
ist. Ein Sourcecode mit mehreren hundert Zeilen an einem Stück, ist extrem schwer zu lesen.

Wartung

Nachdem ein Programm geschrieben wurde, ist es oftmals jahrelang im Einsatz. Während dieser Zeit
müssen Fehler korrigiert und weitere Funktionen eingebaut werden. Durch die Abgrenzung von
Teilaufgaben wird das Programm übersichtlicher. Es ist auch Jahre später viel einfacher, Änderungen
vorzunehmen.

Recycling

Funktionen können sehr einfach wiederverwendet werden. Sie müssen also nicht jedes mal das ganze
Programm neu erfinden. Vielmehr können sie Teile aus bestehenden Programmen übernehmen.

Beispielsweise stehen in Python Dutzende von Bibliotheken mit vorgefertigten Funktionen zur
Verfügung. Diese Funktiomnen hat ein anderer Softwareentwickler erstellt und wir können Sie nun
nutzen. Damit ersparen wir uns viele Stunden Arbeit.

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

Vorgehen

Gedankenspiel: Auftrag einem Mitarbeiter erteilen

Sie wollen einem Kollegen den Auftrag erteilen, ihnen einen Kaffee aus dem
Automaten zu holen. Dieser Kollege weiss, wo der Automat steht und wie man
den Kaffeeautomaten bedient.

Was müssen sie dem Kollegen alles mitteilen bzw. mitgeben?
Was wollen sie erhalten, wenn der Auftrag erledigt ist?

Lösungsidee

Was muss ich dem Kollegen mitteilen bzw.
mitgeben?

Ob ich einen Kaffee oder einen Espresso
möchte.
Ob ich Rahm und/oder Zucker möchte.
Das Geld für den Automaten.
Meine Kaffeetasse.

Was will ich erhalten?

Meine Kaffeetasse mit dem gewünschten
Kaffee drin.

Fassen wir das in Pseudocode zusammen könnte der Auftrag in etwa so
aussehen:

money = 4.50
size = "Espresso"
cream = False
sugar = True
cup = Cup()

coffee =
colleague.bring_coffee(money, size,
cream, sugar, cup)

2026/02/03 07:16 3/8 LU09a - Funktionen

BZZ - Modulwiki - https://wiki.bzz.ch/

Funktion realisieren

Nun gehen Sie daran, die Funktion zu realisieren. Dabei empfiehlt es sich, gezielt vorzugehen:

Funktionsblock definieren1.
Dokumentationszeichenkette (docstring)2.
Logik programmieren3.

1. Funktionsblock definieren

Bezeichner der Funktion definieren

Als ersten Schritt überlegen Sie sich, welche Teilaufgabe diese Funktion erledigen soll. Diese
Teilaufgabe muss sich in einem kurzen Satz prägnant umschreiben lassen. Unklare oder schwammig
definierte Teilaufgaben führen in der Regel zu schlechten Funktionen.

Vermeiden Sie Füllwörter wie Ding, etwas, machen, …
Eine Methode hat genau eine Aufgabe ⇒ Beschreibungen mit und bzw. oder vermeiden.

Aus der Definition der Aufgabe lässt sich auch ein sinnvoller Name für die Funktion ableiten.

Beispiele:

Beschreibung: Die Methode gibt einen String an der aktuellen Cursorposition aus.
Name: put_string

Beschreibung: Die Methode prüft, ob die Eingabe des Benutzers eine Zahl ist.
Name: is_number

Aus dem Namen der Funktion soll sich also auch der Zweck der Funktion herleiten lassen (Sprechend
sein). Funktionsnamen sind klein geschrieben. Handelt es sich um mehr als ein Wort, so ist die
snake_case_schreibweise angebracht. Jede Funktionsdefinition beginnt mit dem Wort def um Python
anzuzeigen, dass eine neue Funktion definiert wird.

def put_string():
 ...

Parameter festlegen

Zur Schnittstelle gehören auch die Parameter/Argumente, welche der Aufrufer an die Funktion weiter
gibt. Jeder Parameter benötigt einen einmaligen Bezeichner

def check_login(username, password): # Korrekte Bezeichner
 ...

def check_name_identical(name, name): # führt zu einem Fehler, da die

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

Parameter identische Bezeichner haben

Zu jedem Paramter in der Schnittstelle wird innerhalb der Funktion automatisch eine lokale Variable
deklariert. Im Beispiel check_login stehen also innerhalb der Methode die Referenzvariablen
username und password zur Verfügung.

Beim Aufruf der Funktion gibt der Aufrufer die entsprechenden Werte für diese Variablen mit. Diese
Werte werden automatisch in die entsprechenden lokalen Variablen gespeichert.

Das ist die Codezeile mit def, dem Bezeichner und eventuellen (Parameter/n) abgeschlossen mit
einem ::

def is_number(number):
 ...

Alles was jetzt in die Funktion gehört muss identisch
eingerückt sein. Normalerweise werden dafür 4 Leerzeichen
verwendet.

2. Dokumentationszeichenkette (docstring)

Nun kommt der Kommentarblock mit den Angaben zur Funktion. In vielen Entwicklungswerkzeugen
wird ein Teil dieses Kommentarblocks automatisch erzeugt. Erstellen Sie dazu drei Anführungzeichen
„“„ unterhalb der Funktionsdeklaration und drücken Sie enter

def is_big(number):
 """

 :param number:
 :return:
 """

}

Ergänzen Sie nun den generierten Docstring mit einer aussagekräftigen Beschreibung und der
Beschreibung der Parameter und des Return-Wertes. Falls sie keinen Return-Wert geplant haben,
schreiben Sie None hinter :return:

def is_big(number):
 """
 Checks if a given number is a big number
 :param number (int): the number to check
 :return (bool): True or False depending on the size of the number
 """

https://wiki.bzz.ch/howto/pycharm/docstring

2026/02/03 07:16 5/8 LU09a - Funktionen

BZZ - Modulwiki - https://wiki.bzz.ch/

def say_hello():
 """
 Just says 'Hello'
 :return: None
 """

def multiply(factor1, factor2):
 """
 Multiplies the two numbers factor1 * factor2
 :param factor1 (float): the first number
 :param factor2 (float): the second number
 :return product (float): product of the multiplication
 """

Können Sie die docstrings nicht automatisch erzeugen,
folgen Sie dieser Anleitung.

Weitere Ergänzungen zu den Kommentaren finden Sie in PEP
257 oder in den Coding-Guidelines des BZZ

3. Logik programmieren

Zuletzt programmieren Sie die Logik der Funktion. Betrachten Sie jede Methode wie ein
eigenständiges kleines Programm, mit:

Variablen
Anweisungen
Returnwert

def is_big(number):
 """
 Checks if a given number is a big number
 :param number (int): the number to check
 :return (bool): True or False depending on the size of the number
 """
 threshold = 1000000

 if number > threshold:
 return True
 else:
 return False

https://wiki.bzz.ch/howto/pycharm/docstring
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://wiki.bzz.ch/howto/codingstandards/04-kommentare

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

def say_hello():
 """
 Just says 'Hello'
 :return: None
 """
 print('Hello')

def multiply(factor1, factor2):
 """
 Multiplies the two numbers factor1 * factor2
 :param factor1 (float): the first number
 :param factor2 (float): the second number
 :return product (float): product of the multiplication
 """
 product = factor1 * factor2
 return product

Methoden aufrufen

Rufen wir die Funktion nun auf, so müssen wir darauf achten, dass die Funktion vor dem Aufruf
deklariert (geschrieben) ist.

Beispiel:

def is_big(number):
 """
 Checks if a given number is a big number
 :param number (int): the number to check
 :return (bool): True or False depends on
the size of the number
 """
 threshold = 1000000

 if number > threshold:
 return True
 else:
 return False

def main():
 is_it = is_big(123)
 print(is_it)

if __name__ == '__main__':

2026/02/03 07:16 7/8 LU09a - Funktionen

BZZ - Modulwiki - https://wiki.bzz.ch/

 main()

False

Hinweis: In Python sollte die Funktionsdefinition immer vor
dem Funktionsaufruf stehen. Andernfalls erhalten wir einen
Fehler. Zum Beispiel:

def main():
 is_it = is_big(123)
 print(is_it)

if __name__ == '__main__':
 main()

def is_big(number):
 """
 Checks if a given number is a big
number
 :param number (int): the number to
check
 :return (bool): True or False
depends on the size of the number
 """
 threshold = 1000000

 if number > threshold:
 return True
 else:
 return False

NameError: name 'is_big' is not defined.

M319-F2G, M319-F2F, M319-F2E

 © Kevin Maurizi

https://wiki.bzz.ch/tag/m319-f2g?do=showtag&tag=M319-F2G
https://wiki.bzz.ch/tag/m319-f2f?do=showtag&tag=M319-F2F
https://wiki.bzz.ch/tag/m319-f2e?do=showtag&tag=M319-F2E
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu09:lu09a-funktionen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

https://wiki.bzz.ch/ Printed on 2026/02/03 07:16

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu09/lu09a-funktionen

	LU09a - Funktionen
	Sinn von Funktionen
	Wiederhole Dich nicht (DRY)
	Teilaufgaben erhöhen die Übersicht
	Wartung
	Recycling

	Vorgehen
	Gedankenspiel: Auftrag einem Mitarbeiter erteilen
	Lösungsidee

	Funktion realisieren
	1. Funktionsblock definieren
	Bezeichner der Funktion definieren
	Beispiele:

	Parameter festlegen

	2. Dokumentationszeichenkette (docstring)
	3. Logik programmieren

	Methoden aufrufen

