
2026/02/03 17:44 1/4 LU10d - Debugger anwenden

BZZ - Modulwiki - https://wiki.bzz.ch/

LU10d - Debugger anwenden

Was ist Debugging?

Im Großen und Ganzen ist Debugging der Prozess der Erkennung und Korrektur von Fehlern in einem
Programm.

Es gibt verschiedene Arten von Fehlern, mit denen Sie zu tun haben werden. Einige von ihnen sind
leicht zu finden, wie Syntaxfehler, da sie von der IDE angezeigt werden. Ein weiterer einfacher Fall ist,
wenn der Fehler schnell identifiziert werden kann, indem man sich den Stack-Trace ansieht, der
einem hilft herauszufinden, wo der Fehler aufgetreten ist.

Es gibt jedoch Fehler, die sehr knifflig sein können und bei denen es sehr lange dauert, sie zu finden
und zu beheben. Ein subtiler Logikfehler, der früh im Programm aufgetreten ist, kann sich zum
Beispiel erst sehr spät bemerkbar machen, und manchmal ist es eine echte Herausforderung, die
Dinge zu klären.

An dieser Stelle ist der Debugger sehr nützlich. Der Debugger ist ein leistungsfähiges Werkzeug, mit
dem sich Fehler viel schneller finden lassen, da er einen Einblick in die internen Abläufe eines
Programms gewährt. Dies ist möglich, indem die Ausführung angehalten und der Zustand des
Programms durch eine gründliche Untersuchung der Variablen und ihrer zeilenweisen Änderung
analysiert wird. Während des Debuggens haben Sie die volle Kontrolle über die Dinge.

Untersuchen Sie den Code

Versuchen wir es mit einem einfachen Debugging-Fall. Stellen Sie sich vor, wir haben die folgende
Anwendung:

averagefinder.py

def main():
 print('Average finder v0.1');
 numbers = ['1', '2', '3'];

 avg = find_average(numbers);
 print('The average is ' + str(avg));

def find_average(numbers):
 result = 0
 for number in numbers:
 result += int(number)

 return result

https://wiki.bzz.ch/_export/code/modul/archiv/m319python/learningunits/lu10/debugger?codeblock=0

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu10:debugger https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu10/debugger?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/02/03 17:44

if __name__ == '__main__':
 main()

Das Programm soll den Durchschnitt aller Strings in der Arraylist berechnen.

Es lässt sich problemlos kompilieren und ausführen, aber das Ergebnis ist nicht das, was man
erwarten würde. Wenn wir zum Beispiel 1 2 3 als Eingabe übergeben, ist das Ergebnis 6.

Zunächst einmal müssen Sie sich überlegen, woher der vermutete Fehler kommen könnte. Wir
können davon ausgehen, dass das Problem nicht in den Druckanweisungen liegt.
Höchstwahrscheinlich kommen die unerwarteten Ergebnisse von unserer findAverage-Methode. Um
die Ursache zu finden, sollten wir ihr Verhalten zur Laufzeit untersuchen.

Breakpoints setzen

Um zu untersuchen, wie das Programm zur Laufzeit arbeitet, müssen wir seine Ausführung vor dem
verdächtigen Codestück anhalten. Dies geschieht durch das Setzen von Breakpoints. Breakpoints
geben die Codezeilen an, an denen das Programm angehalten wird, damit Sie seinen Zustand
untersuchen können.

Klicken Sie auf die Zeilennummerierung
um einen Breakpoint zu setzen.

Starten Sie das Programm im Debug-Modus

Starten wir nun das Programm im Debug-Modus.

Rechtsklicken Sie dazu auf den Play-
Button und wählen Sie Debug
<Applikationsname>

Analysieren des Programmzustands

Nachdem die Debugger-Sitzung gestartet wurde, läuft das Programm normal, bis ein Haltepunkt

https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_breakpoint.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_startdebug.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger

2026/02/03 17:44 3/4 LU10d - Debugger anwenden

BZZ - Modulwiki - https://wiki.bzz.ch/

erreicht wird. In diesem Fall wird die Zeile, in der das Programm angehalten wurde, hervorgehoben
und das Fenster des Debuggers erscheint.

Die markierte Zeile ist noch nicht ausgeführt worden. Das Programm wartet jetzt auf weitere
Anweisungen von Ihnen. Im Schwebezustand können Sie Variablen untersuchen, die den Zustand des
Programms enthalten.

Da die findAverage-Methode noch nicht aufgerufen wurde, sind alle ihre lokalen Variablen wie result
noch nicht im Gültigkeitsbereich, aber wir können den Inhalt der ArrayList untersuchen. Sie können
auch Informationen über alle Variablen abrufen, die sich derzeit im Gültigkeitsbereich befinden, und
zwar im Bereich Variablen.

Schritt für Schritt durch das Programm

Jetzt, wo wir mit dem Debug-Tool-Fenster vertraut sind, ist es an der Zeit, in die findAverage-Methode
einzusteigen und herauszufinden, was in ihr passiert.

Schritt 1

Um in eine Methode einzusteigen, klicken Sie auf die Schaltfläche Step Into oder drücken Sie F7.

Schaltfläche „Step into“ im oberen Teil des Debug-Tool-Fensters Eine weitere Zeile wird im Editor
hervorgehoben, da wir den Ausführungspunkt um einen Schritt vorverlegt haben.

Schritt 2

Setzen Sie den Schritt mit Step Over F8 fort. Beachten Sie den Unterschied zu Step Into - auch hier
wird die Ausführung um einen Schritt nach vorne verlagert, aber es werden die Schritte von
aufgerufenen Funktionen wie wie int() auf dem Weg dorthin angezeigt.

Gehen wir weiter und sehen wir uns an, wie die lokale Variable result deklariert ist und wie sie bei
jeder Iteration der Schleife geändert wird.

Das Inline-Debugging hilft uns, Informationen über die Variablenwerte zu erhalten Im Moment enthält
die Variable s den Wert 3. Sie wird in einen Integer-Wert umgewandelt und zum Ergebnis addiert, das
derzeit den Wert 3.0 hat. Bisher keine Fehler. Die Summe wird korrekt berechnet.

Schritt 3

https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_inspect.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319/learningunits/lu09/variablenexplorer.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_step1.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_step2.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu10:debugger https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu10/debugger?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/02/03 17:44

Zwei weitere Schritte führen uns zur Return-Anweisung und wir sehen, wo die Fehlerquelle liegt. Wir
haben vergessen, die Summe durch die Anzahl der Werte zu dividieren. Dies war die Ursache für die
fehlerhafte Rückgabe der Methode.

Der Wert des Ergebnisses wird so zurückgegeben, wie er ist, ohne ihn durch die Anzahl der
Argumente zu dividieren.

Schritt 4

Lassen Sie uns den Fehler korrigieren.

return result / len(numbers)

Beenden Sie die Debugger-Sitzung und führen Sie das
Programm erneut aus

Um zu prüfen, ob das Programm einwandfrei funktioniert, beenden wir die Debugger-Sitzung und
führen das Programm erneut aus. Nun sollte das korrekte Ergebnis The average is 2.0 angezeigt
werden.

m319-E3G,, m319-E3F,, m319-E3E

 © Kevin Maurizi, Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu10/debugger?rev=1711631267

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_step3.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/tag/m319-e3g?do=showtag&tag=m319-E3G%2C
https://wiki.bzz.ch/tag/m319-e3f?do=showtag&tag=m319-E3F%2C
https://wiki.bzz.ch/tag/m319-e3e?do=showtag&tag=m319-E3E
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu10/debugger?rev=1711631267

	LU10d - Debugger anwenden
	Was ist Debugging?﻿
	Untersuchen Sie den Code
	Breakpoints setzen﻿
	Starten Sie das Programm im Debug-Modus﻿
	Analysieren des Programmzustands﻿
	Schritt für Schritt durch das Programm﻿
	Schritt 1
	Schritt 2
	Schritt 3
	Schritt 4

	Beenden Sie die Debugger-Sitzung und führen Sie das Programm erneut aus﻿

