2026/02/03 17:44 1/4 LU10d - Debugger anwenden

LU10d - Debugger anwenden

Was ist Debugging?

Im GroRen und Ganzen ist Debugging der Prozess der Erkennung und Korrektur von Fehlern in einem
Programm.

Es gibt verschiedene Arten von Fehlern, mit denen Sie zu tun haben werden. Einige von ihnen sind
leicht zu finden, wie Syntaxfehler, da sie von der IDE angezeigt werden. Ein weiterer einfacher Fall ist,
wenn der Fehler schnell identifiziert werden kann, indem man sich den Stack-Trace ansieht, der
einem hilft herauszufinden, wo der Fehler aufgetreten ist.

Es gibt jedoch Fehler, die sehr knifflig sein konnen und bei denen es sehr lange dauert, sie zu finden
und zu beheben. Ein subtiler Logikfehler, der frih im Programm aufgetreten ist, kann sich zum
Beispiel erst sehr spat bemerkbar machen, und manchmal ist es eine echte Herausforderung, die
Dinge zu klaren.

An dieser Stelle ist der Debugger sehr nutzlich. Der Debugger ist ein leistungsfahiges Werkzeug, mit
dem sich Fehler viel schneller finden lassen, da er einen Einblick in die internen Ablaufe eines
Programms gewahrt. Dies ist moglich, indem die Ausfuhrung angehalten und der Zustand des
Programms durch eine griindliche Untersuchung der Variablen und ihrer zeilenweisen Anderung
analysiert wird. Wahrend des Debuggens haben Sie die volle Kontrolle Uber die Dinge.

Untersuchen Sie den Code

Versuchen wir es mit einem einfachen Debugging-Fall. Stellen Sie sich vor, wir haben die folgende
Anwendung:

averagefinder.py

main
‘Average finder vO.1'
numbers ‘1, '2', '3

avg find average(numbers
‘The average is ' + str(avg

find average(numbers
result
number numbers:
result += int(number

result

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/_export/code/modul/archiv/m319python/learningunits/lu10/debugger?codeblock=0

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lul0:debugger https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu10/debugger?rev=1711631267

__hame __main__ ':

main

Das Programm soll den Durchschnitt aller Strings in der Arraylist berechnen.

Es lasst sich problemlos kompilieren und ausfihren, aber das Ergebnis ist nicht das, was man
erwarten warde. Wenn wir zum Beispiel 1 2 3 als Eingabe Ubergeben, ist das Ergebnis 6.

Zunachst einmal mussen Sie sich Uberlegen, woher der vermutete Fehler kommen konnte. Wir
kdnnen davon ausgehen, dass das Problem nicht in den Druckanweisungen liegt.
Hochstwahrscheinlich kommen die unerwarteten Ergebnisse von unserer findAverage-Methode. Um
die Ursache zu finden, sollten wir ihr Verhalten zur Laufzeit untersuchen.

Breakpoints setzen

Um zu untersuchen, wie das Programm zur Laufzeit arbeitet, mussen wir seine Ausfihrung vor dem
verdachtigen Codestlick anhalten. Dies geschieht durch das Setzen von Breakpoints. Breakpoints
geben die Codezeilen an, an denen das Programm angehalten wird, damit Sie seinen Zustand
untersuchen koénnen.

]

Klicken Sie auf die Zeilennummerierung
um einen Breakpoint zu setzen.

Starten Sie das Programm im Debug-Modus

Starten wir nun das Programm im Debug-Modus.

]

Rechtsklicken Sie dazu auf den Play-
Button und wahlen Sie Debug
<Applikationsname>

Analysieren des Programmzustands

Nachdem die Debugger-Sitzung gestartet wurde, lduft das Programm normal, bis ein Haltepunkt

https://wiki.bzz.ch/ Printed on 2026/02/03 17:44


https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_breakpoint.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_startdebug.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger

2026/02/03 17:44 3/4 LU10d - Debugger anwenden

erreicht wird. In diesem Fall wird die Zeile, in der das Programm angehalten wurde, hervorgehoben
und das Fenster des Debuggers erscheint.

(]

Die markierte Zeile ist noch nicht ausgefuhrt worden. Das Programm wartet jetzt auf weitere
Anweisungen von lhnen. Im Schwebezustand kénnen Sie Variablen untersuchen, die den Zustand des
Programms enthalten.

Da die findAverage-Methode noch nicht aufgerufen wurde, sind alle ihre lokalen Variablen wie result
noch nicht im Gultigkeitsbereich, aber wir kdnnen den Inhalt der ArrayList untersuchen. Sie kénnen
auch Informationen uber alle Variablen abrufen, die sich derzeit im Gultigkeitsbereich befinden, und
zwar im Bereich Variablen.

B
Schritt fur Schritt durch das Programm

Jetzt, wo wir mit dem Debug-Tool-Fenster vertraut sind, ist es an der Zeit, in die findAverage-Methode
einzusteigen und herauszufinden, was in ihr passiert.

Schritt 1

Um in eine Methode einzusteigen, klicken Sie auf die Schaltflache Step Into oder dricken Sie F7.

]

Schaltflache ,Step into” im oberen Teil des Debug-Tool-Fensters Eine weitere Zeile wird im Editor
hervorgehoben, da wir den Ausfuhrungspunkt um einen Schritt vorverlegt haben.

Schritt 2

Setzen Sie den Schritt mit Step Over F8 fort. Beachten Sie den Unterschied zu Step Into - auch hier
wird die Ausfuhrung um einen Schritt nach vorne verlagert, aber es werden die Schritte von
aufgerufenen Funktionen wie wie int () auf dem Weg dorthin angezeigt.

Gehen wir weiter und sehen wir uns an, wie die lokale Variable result deklariert ist und wie sie bei
jeder lteration der Schleife geandert wird.

(]

Das Inline-Debugging hilft uns, Informationen Gber die Variablenwerte zu erhalten Im Moment enthalt
die Variable s den Wert 3. Sie wird in einen Integer-Wert umgewandelt und zum Ergebnis addiert, das
derzeit den Wert 3.0 hat. Bisher keine Fehler. Die Summe wird korrekt berechnet.

Schritt 3

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_inspect.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319/learningunits/lu09/variablenexplorer.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_step1.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_step2.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lul0:debugger https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu10/debugger?rev=1711631267

Zwei weitere Schritte fihren uns zur Return-Anweisung und wir sehen, wo die Fehlerquelle liegt. Wir
haben vergessen, die Summe durch die Anzahl der Werte zu dividieren. Dies war die Ursache fur die
fehlerhafte Rickgabe der Methode.

(]

Der Wert des Ergebnisses wird so zuriickgegeben, wie er ist, ohne ihn durch die Anzahl der
Argumente zu dividieren.

Schritt 4

Lassen Sie uns den Fehler korrigieren.

return result / len(numbers)

Beenden Sie die Debugger-Sitzung und fuhren Sie das
Programm erneut aus

Um zu prifen, ob das Programm einwandfrei funktioniert, beenden wir die Debugger-Sitzung und
fuhren das Programm erneut aus. Nun sollte das korrekte Ergebnis The average is 2.0 angezeigt
werden.

m319-E3G,, m319-E3F,, m319-E3E

© Kevin Maurizi, Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/im319python/learningunits/lul0/debugger?rev=1711631267

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 17:44


https://wiki.bzz.ch/_detail/modul/m319python/learningunits/lu10/lu10_step3.png?id=modul%3Aarchiv%3Am319python%3Alearningunits%3Alu10%3Adebugger
https://wiki.bzz.ch/tag/m319-e3g?do=showtag&tag=m319-E3G%2C
https://wiki.bzz.ch/tag/m319-e3f?do=showtag&tag=m319-E3F%2C
https://wiki.bzz.ch/tag/m319-e3e?do=showtag&tag=m319-E3E
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu10/debugger?rev=1711631267

	LU10d - Debugger anwenden
	Was ist Debugging?﻿
	Untersuchen Sie den Code
	Breakpoints setzen﻿
	Starten Sie das Programm im Debug-Modus﻿
	Analysieren des Programmzustands﻿
	Schritt für Schritt durch das Programm﻿
	Schritt 1
	Schritt 2
	Schritt 3
	Schritt 4

	Beenden Sie die Debugger-Sitzung und führen Sie das Programm erneut aus﻿


