2026/02/03 12:09 1/6 LU11b - Python-Module

LUllb - Python-Module

Es gibt eigentlich drei verschiedene Mdéglichkeiten, ein Modul in Python zu definieren:

e Ein Modul kann in Python selbst geschrieben werden.

e Ein Modul kann in C geschrieben und zur Laufzeit dynamisch geladen werden, wie das re
(regular expression) Modul.

e Ein eingebautes Modul ist von Haus aus im Interpreter enthalten, wie das Modul itertools.

Der Zugriff auf den Inhalt eines Moduls erfolgt in allen drei Fallen auf die gleiche Weise: mit der
import-Anweisung.

Hier geht es hauptsachlich um Module, die in Python geschrieben sind. Das Tolle an in Python
geschriebenen Modulen ist, dass sie aulRerst einfach zu erstellen sind. Alles, was Sie tun muissen, ist,
eine Datei zu erstellen, die legitimen Python-Code enthalt, und der Datei einen Namen mit der
Erweiterung . py zu geben. Das war's! Es ist keine spezielle Syntax oder Voodoo ndétig.

Nehmen wir zum Beispiel an, Sie haben eine Datei namens mod. py erstellt, die Folgendes enthalt:

mod.py
S "If Comrade Napoleon says it, it
must be right."
a

foo(arg
f'arg = {arg}'

Foo:

Mehrere Objekte sind in mod.py definiert:
¢ s (eine Zeichenkette)
¢ a (eine Liste)
e foo() (eine Funktion)
¢ Foo (eine Klasse)

Vorausgesetzt, mod. py befindet sich an einem geeigneten Ort, Uber den Sie gleich mehr erfahren
werden, kann auf diese Objekte zugegriffen werden, indem das Modul wie folgt importiert wird:

mod

mod.s

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_export/code/modul/archiv/m319python/learningunits/lu11/lu11b-module?codeblock=0

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lull:lullb-module https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lul1l/lullb-module

#If Comrade Napoleon says it, it must be

right.

mod.a
#[100, 200, 300]

mod.foo (['quux', 'corge', ‘'grault'’
#arg = ['quux', 'corge', 'grault']

X = mod.Foo
X
#<mod.Foo object at 0x03C181F0>

Der Modulsuchpfad

Fahren wir mit dem obigen Beispiel fort und schauen wir uns an, was passiert, wenn Python die

Anweisung ausfuhrt:

import mod Wenn der Interpreter die obige Import-Anweisung ausfuhrt, sucht er nach mod. py in
einer Liste von Verzeichnissen, die aus den folgenden Quellen zusammengestellt wurde:

* Das Verzeichnis, aus dem das Eingabeskript ausgefuhrt wurde

 Die Liste der Verzeichnisse, die in der Umgebungsvariablen PYTHONPATH enthalten sind, falls
diese gesetzt ist. (Das Format fur PYTHONPATH ist betriebssystemabhangig, sollte aber die
PATH-Umgebungsvariable nachahmen).

e Eine installationsabhangige Liste von Verzeichnissen, die zum Zeitpunkt der Installation von
Python konfiguriert wurde

Der resultierende Suchpfad ist in der Python-Variablen sys. path zuganglich, die von einem Modul
namens sys bezogen wird:

1

sys
sys.path
#[I I’

'C:\\Users\ \peter\\Documents\\Python\\doc"',
'C:\\Python36\\Lib\\idlelib"', 'C:\\Python310\\
python310.zip', 'C:\\Python310\\DLLs"',
"C:\\Python3160\\lib"', 'C:\\Python310",
"C:\\Python310\\lib\\site-packages']

Der genaue Inhalt von sys . path ist installationsabhangig.
Die obigen Angaben werden auf lhrem Computer

https://wiki.bzz.ch/

Printed on 2026/02/03 12:09

2026/02/03 12:09 3/6 LU11b - Python-Module

@ hochstwahrscheinlich etwas anders aussehen.

Um also sicherzustellen, dass Ihr Modul gefunden wird, missen Sie eine der folgenden Mallnahmen
ergreifen:

e Legen Sie mod. py in das Verzeichnis, in dem sich das aufrufende Skript befindet.
« Andern Sie die Umgebungsvariable PYTHONPATH so, dass sie das Verzeichnis enthalt, in dem
sich mod. py befindet, bevor Sie den Interpreter starten.
o Oder: Legen Sie mod. py in einem der Verzeichnisse ab, die bereits in der PYTHONPATH-
Variable enthalten sind
e Legen Sie mod. py in eines der installationsabhangigen Verzeichnisse, auf die Sie je nach
Betriebssystem Schreibzugriff haben oder nicht

Es gibt noch eine weitere Maglichkeit: Sie kdnnen die Moduldatei in ein beliebiges Verzeichnis lhrer
Wahl ablegen und dann sys.path zur Laufzeit so andern, dass es dieses Verzeichnis enthalt. In
diesem Fall konnten Sie z.B. mod. py in das Verzeichnis C:\Users\peter ablegen und dann die
folgenden Anweisungen eingeben:

sys.path.append(r'C:\Users\peter'

sys.path
#['',
"C:\\Users\\peter\\Documents\\Python\\doc"',
‘C:\\Python36\\Lib\\idlelib",
"C:\\Python36\\python36.zip",
"C:\\Python36\\DLLs', 'C:\\Python36\\lib"',
'C:\\Python36', 'C:\\Python36\\lib\\site-
packages', 'C:\\Users\\peter']

mod

Die import-Anweisung

Modulinhalte werden dem Aufrufer mit der import-Anweisung zur Verfugung gestellt. Die import-
Anweisung kann viele verschiedene Formen annehmen, wie unten gezeigt.

import <Modul_Name>

Die einfachste Form ist die bereits oben gezeigte:

modul name

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

update: modul:archiv:m319python:learningunits:lull:lullb-module https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lul1l/lullb-module

2024/03/28
14:07

Beachten Sie, dass dies den Inhalt des Moduls fur den Aufrufer nicht direkt zuganglich macht. Jedes
Modul hat einen eigenen Namensraum. Die Anweisung import <Modulname> platziert nur
<Modulname> im Namensraum des Aufrufers. Die Objekte, die im Modul definiert sind, bleiben im
privaten Namensraum des Moduls. Fur den Aufrufer sind die Objekte des Moduls nur dann zuganglich,

wenn mit <modul name>.<object> darauf zugegriffen wird:

Trotz des Imports bleiben s und foo bleiben im privaten
Namensraum des Moduls und sind im lokalen Kontext nicht

von Bedeutung:

mod

S
NameError: name 's' is not defined
foo('quux'

#NameError: name 'foo' is not defined

Um im lokalen Kontext zuganglich zu sein, muss den Namen
der im Modul definierten Objekte das Kiirzel mod
vorangestellt werden:

mod

mod.s
#If Comrade Napoleon says it, it must be
right.
mod. foo('quux'
#arg = quux

import <module_name> as <alt_ name>

Sie konnen auch ein ganzes Modul unter einem alternativen Namen importieren:

module name alt name
mod my module

my module.a
#[100, 200, 300]
my module.foo('qux’
#arg = qux

https://wiki.bzz.ch/

Printed on 2026/02/03 12:09

2026/02/03 12:09 5/6 LU11b - Python-Module

from <module_name> import <name(s)>

Eine alternative Form der Import-Anweisung erlaubt es, einzelne Objekte aus dem Modul direkt in
den Namensraum des Aufrufers zu importieren:

module name name (s

Nach Ausfuhrung der obigen Anweisung kann in der Umgebung des Aufrufers auf <name(s)> ohne
den Prafix <module_name> verwiesen werden:

mod s, foo
S
#ITf Comrade Napoleon says it, it must be
right.
foo('quux'

#arg = quux

Da bei dieser Form des Imports die Objektnamen direkt in den Namensraum des Aufrufers
eingetragen werden, werden bereits vorhandene Objekte mit demselben Namen Uberschrieben:

a 'foo', 'bar', 'baz'
a
#['foo', 'bar', 'baz']

mod a

a
#[100, 200, 300]

from <module_name> import <name> as <alt_name>

Es ist auch maoglich, einzelne Objekte zu importieren, diese aber mit alternativen Namen im lokalen
Namensraum einzutragen:

module name name
alt name name alt name

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

update: modul:archiv:m319python:learningunits:lull:lullb-module https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lul1l/lullb-module

2024/03/28
14:07

Dadurch ist es maglich, Namen direkt in den lokalen Namensraum einzugeben, ohne dass es zu
Konflikten mit bereits vorhandenen Namen kommt:

S "foo'
a ‘foo', 'bar', 'baz'
mod S string, a alist
S
#'foo'
string
#'If Comrade Napoleon says it, it must be
right.'
a
#['foo', 'bar', 'baz']
alist

#[100, 200, 300]

Inhalt von RealPython

From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/archiv/im319python/learningunits/lull/lullb-module -

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/

Printed on 2026/02/03 12:09

https://realpython.com/python-modules-packages/#python-packages
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu11/lu11b-module

	LU11b - Python-Module
	Der Modulsuchpfad
	Die import-Anweisung
	import <Modul_Name>
	import <module_name> as <alt_name>
	from <module_name> import <name(s)>
	from <module_name> import <name> as <alt_name>

