
2026/02/03 10:40 1/8 LU13a - Spezielle Methoden für Klassen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU13a - Spezielle Methoden für Klassen

print() von Objekten

Vielleicht haben Sie bereits einmal probiert, eine eigene Klasse direkt mit print() auszugeben.

Das Resultat (hier am Beispiel der Klasse Car) auf der Konsole sah bestimmt irgendwie in dieser Art
aus:

Car(brand='Toyota', model='Corolla', construction=2010)

Das liegt daran, das print() die Methode __repr__ der Klasse Car aufruft, diese Methode wird für
sie durch den @dataclass Decorator erzeugt. Der Aufbau ist dabei immer identisch, die generierte
Repr-Zeichenkette enthält den Klassennamen sowie den Namen und die Repr der einzelnen Attribute
in der Reihenfolge, in der sie in der Klasse definiert sind.

__repr__

Die __repr__ Methode hat den Zweck, die „offizielle“ String-Darstellung eines Objekts zu erzeugen.
Diese Repräsentation wird für Debugging- und Protokollierungszwecke verwendet und sollte eine
Zeichenkette sein, die, wenn sie ausgewertet (eval()) wird, ein Objekt mit demselben Wert wie das
ursprüngliche Objekt erzeugen würde.

Diese __repr__ Methode sollte daher nicht leichtfertig
einfach überschrieben werden. Trotzdem gibt es sicherlich
den Fall, dass wir die print()-Ausgabe eines Objektes an
unsere Bedürfnisse anpassen möchten. Dafür gibt es die
__str__ Methode.

__str__

Die Methode __str__ in Python ähnelt der Methode __repr__, aber sie wird verwendet, um die
„informelle“ String-Darstellung eines Objekts zu erzeugen. Diese Darstellung wird immer dann
verwendet, wenn eine String-Darstellung eines Objekts angefordert wird, z.B. bei der Verwendung der
Funktion print(), der Umwandlung eines Objektes in einen String str(car) oder bei der String-
Verkettung. Die Methode __str__ sollte eine Zeichenkette erzeugen, die benutzerfreundlicher und
leichter zu lesen ist als die __repr__-Darstellung.

Zu beachten gilt: Ist die __str__ Methode nicht implementiert, so wird beim print() auf die
implementierte __repr__ Methode ausgewichen.

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu13:lu13a-funktionenfuerklassen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu13/lu13a-funktionenfuerklassen

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

Beispiel:

from dataclasses import dataclass

@dataclass
class Person:
 name: str
 address: str
 city: str
 zip :str

if __name__ == '__main__':
 p = Person('Marcel Ferreira','Hinter dem Haus 3',
'Hinterhelfenschwil', '8005')
 print(p)

Die Ausgabe entspricht nun der Ausgabe der Methode __repr__, welche
@dataclass für uns generiert hat.

Person(name='Marcel Ferreira', address='Hinter dem Haus 3',
city='Hinterhelfenschwil', zip='8005')

Ergänzen wir jetzt die __str__-Methode können wir die Ausgabe beinflussen:

from dataclasses import dataclass

@dataclass
class Person:
 name: str
 address: str
 city: str
 zip :str

 def __str__(self):
 return self.name + '\n' + self.address + '\n' +
self.zip+ ' ' + self.city

if __name__ == '__main__':
 p = Person('Marcel Ferreira','Hinter dem Haus 3',
'Hinterhelfenschwil', '8005')
 print(p)

Die Ausgabe entspricht nun der Ausgabe der Methode __repr__, welche
@dataclass für uns generiert hat.

2026/02/03 10:40 3/8 LU13a - Spezielle Methoden für Klassen

BZZ - Modulwiki - https://wiki.bzz.ch/

Marcel Ferreira
Hinter dem Haus 3
8005 Hinterhelfenschwil

Sonderfall print() von Listen

@dataclass
class Car():
 brand: str
 model: str
 construction: int

 def __str__(self):
 return f"I'm a {self.model} from {self.brand}
constructed in {self.construction}"

if __name__ == "__main__":

 car = Car('Toyota', 'Corolla', 2010)
 car1 = Car('Tesla', 'Model 3', 2019)

 cars = [car, car1]

 print(car)
 print(cars)

I'm a Corolla from Toyota constructed in 2010
[Car(brand='Toyota', model='Corolla', construction=2010),
Car(brand='Tesla', model='Model 3', construction=2019)]

Obwohl die Klasse Car die Methode __str__ implementiert hat, wird die __repr__ Methode
aufgerufen, wenn mehrere Objekte der Klasse Car in einer Liste geprintet werden. Eine mögliche
Lösung für diesen Fall, wäre der Umweg über eine Listen-Abstraktionen:

...
print([str(item) for item in cars])

["I'm a Corolla from Toyota constructed in 2010", "I'm a
Model 3 from Tesla constructed in 2019"]

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu13:lu13a-funktionenfuerklassen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu13/lu13a-funktionenfuerklassen

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

Objekte vergleichen

Sie haben sich vielleicht bereits gefragt, wie Sie nun eigene Objekte miteinander vergleichen können.
Verleiche sind wichtig um beispielsweise sortieren zu können. Nehmen wir an, wir haben eine Liste
mit 5 Autos. Und möchten diese Autos nun nach Jahrgang sortieren.

@dataclass
class Car():
 brand: str
 model: str
 construction: int

if __name__ == "__main__":
 cars = [Car('BMW', 'M3', 2019), Car('Audi', 'A4', 2018),
Car('Mercedes', 'C200', 2017),
 Car('Tesla', 'Model 3', 2019), Car('Toyota',
'Corolla', 2012)]

Um die Klasse Car nach construction sortierbar zu machen, müssen die Methoden __lt__,
__le__, __gt__, __ge__, __eq__ und __ne__ für die Klasse definiert werden. Mit diesen Methoden
können Sie festlegen, wie zwei Car-Objekte mit den Operatoren <, <=, >, >=, == und !=
miteinander verglichen werden sollen.

Im Folgenden finden Sie ein Beispiel, wie Sie diese Vergleichsmethoden für die Klasse Car definieren
können:

@dataclass
class Car():
 brand: str
 model: str
 construction: int

 def __lt__(self, other):
 if isinstance(other, Car):
 return self.construction < other.construction
 return False

 def __le__(self, other):
 if isinstance(other, Car):
 return self.construction <= other.construction
 return False

 def __gt__(self, other):

2026/02/03 10:40 5/8 LU13a - Spezielle Methoden für Klassen

BZZ - Modulwiki - https://wiki.bzz.ch/

 if isinstance(other, Car):
 return self.construction > other.construction
 return False

 def __ge__(self, other):
 if isinstance(other, Car):
 return self.construction >= other.construction
 return False

 def __eq__(self, other):
 if isinstance(other, Car):
 return self.construction == other.construction
 return False

 def __ne__(self, other):
 return not __eq__(other)

In diesem Beispiel prüfen die Methoden __lt__, __le__, __gt__, __ge__ und __eq__, ob das
andere Objekt eine Instanz der Klasse Car ist. Ist dies der Fall, vergleichen sie das Attribut
construction der beiden Car-Objekte, um festzustellen, ob sie den angegebenen
Vergleichsoperator erfüllen. Wenn das andere Objekt keine Instanz der Klasse Car ist, dann gibt die
Vergleichsmethode False zurück.

Sobald Sie diese Vergleichsmethoden für die Klasse Car definiert haben, können Sie die Operatoren <,
<=, >, >=, == und != verwenden, um Car-Objekte miteinander zu vergleichen. Automatisch werden
nun die von Ihnen definierten Vergleichsmethoden verwendet, um die relative Reihenfolge der
Objekte zu bestimmen. Ein Beispiel:

Create two Car objects
c1 = Car('Ford', 'Fiesta', 2010)
c2 = Car('Toyota', 'Camry', 2012)

Check if the first Car is less than the second Car
if c1 < c2:
 print('c1 is less than c2')
else:
 print('c1 is not less than c2')

In diesem Beispiel wird die __lt__-Methode der Car-Klasse aufgerufen, um die beiden Car-Objekte
zu vergleichen, und sie gibt True zurück, wenn das Attribut construction des ersten Car-Objekts
kleiner ist als das Attribut construction des zweiten Car-Objekts, und False, wenn dies nicht der
Fall ist.

Sobald Sie die Klasse Car sortierbar gemacht haben, können Sie sie auch mit der Funktion sorted()
verwenden, um eine Liste von Car-Objekten zu sortieren. Zum Beispiel:

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu13:lu13a-funktionenfuerklassen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu13/lu13a-funktionenfuerklassen

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

@dataclass
class Car():
 brand: str
 model: str
 construction: int

 def __lt__(self, other):
 if isinstance(other, Car):
 return self.construction < other.construction
 return False

if __name__ == "__main__":
 cars = [Car('BMW', 'M3', 2019), Car('Audi', 'A4', 2018),
Car('Mercedes', 'C200', 2017),
 Car('Tesla', 'Model 3', 2019), Car('Toyota',
'Corolla', 2012)]
 sorted_cars = sorted(cars)
 print(sorted_cars)

[Car(brand='Toyota', model='Corolla', construction=2012),
Car(brand='Mercedes', model='C200', construction=2017),
Car(brand='Audi', model='A4', construction=2018),
Car(brand='BMW', model='M3', construction=2019),
Car(brand='Tesla', model='Model 3', construction=2019)]

Für ein einfaches Sortieren mit der sorted(list)-Funktion
reicht es, wenn Sie die __lt__-Funktion implementiert
haben.

getter_for_not_existing_attribute() - Methode

In manchen Klassen macht es Sinn einen Getter für einen berechneten Wert zu ergänzen, anstatt ein
Attribut für diesen Wert zu haben. Betrachten wir das Beispiel der Klasse Person, eine Person hat
ein date_of_birth, das age der Person ist aber jedes Jahr ein anderes. Es macht also keinen Sinn,
das Attribut age in der Klasse zu speichern, denn der Wert des Attributes ist spätestens nach 365
Tagen wieder veraltet.

from dataclasses import dataclass
from datetime import date

2026/02/03 10:40 7/8 LU13a - Spezielle Methoden für Klassen

BZZ - Modulwiki - https://wiki.bzz.ch/

@dataclass
class Person:
 name: str
 date_of_birth: date

Trotzdem kann es ganz praktisch sein, das Alter einer Person mit einer Methode abfragen zu können.
Wir ergänzen den Code also um das @property age und berechnen in der Methode das Alter der
Person und geben dieses zurück.

from dataclasses import dataclass
from datetime import date

@dataclass
class Person:
 name: str
 date_of_birth: date

 @property
 def age(self):
 return date.today().year - self.date_of_birth.year

if __name__ == '__main__':
 p = Person('Peter', date(1999,1,1))
 print(p.age)

Für das Speichern von Datumswerten ist der Datentyp date
aus dem Modul datetime hervorragend geeignet. Mehr
dazu finden Sie in der Learningunit LU15 - DateTime

 © Kevin Maurizi, partly generated with https://chat.openai.com/chat

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu13/lu13a-funktionenfuerklassen

Last update: 2024/03/28 14:07

https://it.bzz.ch/wikiV2/modul/m319python/learningunits/lu15/start
https://chat.openai.com/chat
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu13/lu13a-funktionenfuerklassen

Last
update:
2024/03/28
14:07

modul:archiv:m319python:learningunits:lu13:lu13a-funktionenfuerklassen https://wiki.bzz.ch/modul/archiv/m319python/learningunits/lu13/lu13a-funktionenfuerklassen

https://wiki.bzz.ch/ Printed on 2026/02/03 10:40

	LU13a - Spezielle Methoden für Klassen
	print() von Objekten
	__repr__
	__str__
	Beispiel:
	Sonderfall print() von Listen

	Objekte vergleichen
	getter_for_not_existing_attribute() - Methode

