
2026/02/03 12:16 1/3 LU11e - Unit Testing

BZZ - Modulwiki - https://wiki.bzz.ch/

LU11e - Unit Testing

Was sind Unit Tests?

Unit Tests resp. Komponententests sind automatisierte Tests kleiner Codeeinheiten, die isoliert
getestet werden und weisen Aspekte von White-Box und Black-Box Tests auf (siehe Theorie über
Testverfahren). Im Wesentlichen ist ein Unit Test ein Programm, das die öffentlichen Methoden einer
Klasse aufruft und überprüft, ob die Ergebnisse den Erwartungen entspricht.

Vorteile von Unit Tests

Wenn Sie Ihre Komponententests richtig geschrieben haben, bringen sie mehrere Vorteile bezgl. der
Wartung des Codes:

Dank Komponententests werden Fehler bereits während der Entwicklung gefunden:
Wenn Sie einen Codeabschnitt umgestalten oder erweitern und Ihre früheren
Tests fehlschlagen, haben Sie das Verhalten dieser Methode geändert, was auf einen Fehler
hinweisen könnte.
Der Korrekturaufwand für neu gefundenen Fehler ist erheblich geringer, als wenn diese erst im
laufenden Betrieb gefunden werden.
Mit anderen Worten, Komponententests schützen Ihren Code vor Regression (d.h.
Systemänderungen, die Fehler verursachen).
Nachdem Sie Ihren Code geändert haben, müssen Sie die Testsuite ausführen! Auf diese Weise
finden Sie heraus, ob es eine Regression gab (wenn ein Test fehlschlägt).

Unit Tests bilden die Basis der Testpyramide



Last update: 2024/03/28 14:07 modul:archiv:m431:learningunits:lu11:junit https://wiki.bzz.ch/modul/archiv/m431/learningunits/lu11/junit

https://wiki.bzz.ch/ Printed on 2026/02/03 12:16

Wie sind Unit Tests zu implementieren?

So wie es die SOLID Principles für die Programmierung im Allgemeinen haben, gibt es auch Prinzipien
für allgemeine bewährte Verfahren beim Unit Testing: die FIRST Principles. Gehen wir sie durch.

[F]ast

Sie sollten nicht zögern, die Testsuite zu jedem Zeitpunkt des Entwicklungszyklus auszuführen,
selbst wenn es Tausende von Unit Tests gibt. Sie sollten in Sekundenschnelle ausgeführt
werden. Wenn die Ausführung eines Tests zu lange dauert, leistet dieser wahrscheinlich mehr, als er
sollte – und ist daher kein Unit Test!

[I]ndependent resp. [I]solated

Jeder einzelne Test sollte unabhängig von allen anderen sein, damit seine Ergebnisse nicht von
anderen Faktoren beeinflusst werden. Mit dieser Definition sollten Sie normalerweise den „3 A’s des
Testens“ folgen: Arrange, Act, Assert (auch bekannt als „Given-When-Then“).

Arrange: Alle erforderlichen Daten sollten dem Test in diesem Abschnitt zur Verfügung gestellt
werden und diese sollten nicht von Ihrer Umgebung abhängen.
Act: Hier führen Sie die zu testende Methode aus.
Assert: Unit Tests haben möglichst nur ein Ergebnis. Das bedeutet, dass pro Test nur
ein bestimmter Zustand eines Objekts überprüft werden sollte. Dies bedeutet, dass
sich alle getesteten Variablen auf die von Ihnen ausgeführte Methode beziehen sollten.

[R]epeatable

Tests sollten wiederholbar und deterministisch sein: d.h. das Ergebnis ist jedes Mal dasselbe und zwar
unabhängig von der Umgebung.

[S]self-Validating

Der Test selbst sollte Ihnen sagen, ob er bestanden wurde. Eine manuelle Überprüfung der Werte
sollte nicht erforderlich sein. Die meisten Bibliotheken (wie pytest, siehe Doku) arbeiten zugunsten
dieses Prinzips.

[T]horough

Ihr Test sollte alle „glücklichen Pfade“ einer Methode abdecken, alle Randfälle (bei denen Sie glauben,
dass der Test fehlschlagen könnte), illegale Argumente, Sicherheitslücken, grosse Wert etc. Mit
anderen Worten: jedes mögliche Szenario sollte getestet werden und nicht nur genug, um eine
(nahezu) 100%ige Codeabdeckung zu haben.

https://en.wikipedia.org/wiki/SOLID
https://docs.pytest.org/en/7.1.x/getting-started.html


2026/02/03 12:16 3/3 LU11e - Unit Testing

BZZ - Modulwiki - https://wiki.bzz.ch/

Das zusätzliche T: Timely

Gemäss TDD sollten Komponententests vor dem zu testenden Produktionscode geschrieben
werden. Dies geschieht, indem die Abstraktion (Schnittstelle) und dann der Test allein auf der
Grundlage der Methodensignatur und -spezifikation geschrieben wird. Nachdem der Test geschrieben
ist, kann der produktive Code implementiert und direkt getestet werden.

Credits: Der Inhalt dieses Artikels wurde grösstenteils direkt aus dem Englischen übernommen und
nur leicht modifiziert. Das Original stammt aus diesem Beitrag der DEV Community, verfasst von
Lucas Fonseca Mundim

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/m431/learningunits/lu11/junit

Last update: 2024/03/28 14:07

https://en.wikipedia.org/wiki/Test-driven_development
https://dev.to/mundim/writing-your-f-i-r-s-t-unit-tests-1iop
https://dev.to/mundim
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m431/learningunits/lu11/junit

	[LU11e - Unit Testing]
	LU11e - Unit Testing
	Was sind Unit Tests?
	Vorteile von Unit Tests
	Unit Tests bilden die Basis der Testpyramide
	Wie sind Unit Tests zu implementieren?
	[F]ast
	[I]ndependent resp. [I]solated
	[R]epeatable
	[S]self-Validating
	[T]horough
	Das zusätzliche T: Timely




