2026/02/03 12:16 1/3 LU11e - Unit Testing

LUlle - Unit Testing

Was sind Unit Tests?

Unit Tests resp. Komponententests sind automatisierte Tests kleiner Codeeinheiten, die isoliert
getestet werden und weisen Aspekte von White-Box und Black-Box Tests auf (siehe Theorie Uber
Testverfahren). Im Wesentlichen ist ein Unit Test ein Programm, das die 6ffentlichen Methoden einer
Klasse aufruft und Gberprift, ob die Ergebnisse den Erwartungen entspricht.

Vorteile von Unit Tests

Wenn Sie lhre Komponententests richtig geschrieben haben, bringen sie mehrere Vorteile bezgl. der
Wartung des Codes:

e Dank Komponententests werden Fehler bereits wahrend der Entwicklung gefunden:
Wenn Sie einen Codeabschnitt umgestalten oder erweitern und lhre friiheren
Tests fehlschlagen, haben Sie das Verhalten dieser Methode geandert, was auf einen Fehler
hinweisen konnte.

e Der Korrekturaufwand fur neu gefundenen Fehler ist erheblich geringer, als wenn diese erst im
laufenden Betrieb gefunden werden.

e Mit anderen Worten, Komponententests schutzen Ihren Code vor Regression (d.h.
Systemanderungen, die Fehler verursachen).

e Nachdem Sie Ihren Code geandert haben, mussen Sie die Testsuite ausfuhren! Auf diese Weise
finden Sie heraus, ob es eine Regression gab (wenn ein Test fehlschlagt).

Unit Tests bilden die Basis der Testpyramide

Fac:':ll'v:h Explorative ,‘pchu:ierig
Tests
Ab
nahme
=
o £z
= z
v £
% g
= &
z
Komponententests
L H v
Technisch U n It‘TEStS Einfach

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update: 2024/03/28 14:07 modul:archiv:im431:learningunits:lull:junit https://wiki.bzz.ch/modul/archiv/m431/learningunits/lull/junit

Wie sind Unit Tests zu implementieren?

So wie es die SOLID Principles fur die Programmierung im Allgemeinen haben, gibt es auch Prinzipien
fur allgemeine bewahrte Verfahren beim Unit Testing: die FIRST Principles. Gehen wir sie durch.

[Flast

Sie sollten nicht zogern, die Testsuite zu jedem Zeitpunkt des Entwicklungszyklus auszuflhren,
selbst wenn es Tausende von Unit Tests gibt. Sie sollten in Sekundenschnelle ausgeflhrt

werden. Wenn die Ausfuhrung eines Tests zu lange dauert, leistet dieser wahrscheinlich mehr, als er
sollte - und ist daher kein Unit Test!

[IIndependent resp. [I]solated

Jeder einzelne Test sollte unabhangig von allen anderen sein, damit seine Ergebnisse nicht von
anderen Faktoren beeinflusst werden. Mit dieser Definition sollten Sie normalerweise den ,3 A’'s des
Testens” folgen: Arrange, Act, Assert (auch bekannt als ,Given-When-Then*).

e Arrange: Alle erforderlichen Daten sollten dem Test in diesem Abschnitt zur Verflgung gestellt
werden und diese sollten nicht von Ihrer Umgebung abhangen.

e Act: Hier fuhren Sie die zu testende Methode aus.

e Assert: Unit Tests haben mdglichst nur ein Ergebnis. Das bedeutet, dass pro Test nur
ein bestimmter Zustand eines Objekts Uberpruft werden sollte. Dies bedeutet, dass
sich alle getesteten Variablen auf die von lhnen ausgefiuhrte Methode beziehen sollten.

[R]epeatable

Tests sollten wiederholbar und deterministisch sein: d.h. das Ergebnis ist jedes Mal dasselbe und zwar
unabhangig von der Umgebung.

[S]self-Validating

Der Test selbst sollte Ihnen sagen, ob er bestanden wurde. Eine manuelle Uberpriifung der Werte
sollte nicht erforderlich sein. Die meisten Bibliotheken (wie pytest, siehe Doku) arbeiten zugunsten
dieses Prinzips.

[Tlhorough

Ihr Test sollte alle ,,glucklichen Pfade“ einer Methode abdecken, alle Randfalle (bei denen Sie glauben,
dass der Test fehlschlagen kénnte), illegale Argumente, Sicherheitsllicken, grosse Wert etc. Mit
anderen Worten: jedes maogliche Szenario sollte getestet werden und nicht nur genug, um eine
(nahezu) 100%ige Codeabdeckung zu haben.

https://wiki.bzz.ch/ Printed on 2026/02/03 12:16


https://en.wikipedia.org/wiki/SOLID
https://docs.pytest.org/en/7.1.x/getting-started.html

2026/02/03 12:16 3/3 LU11le - Unit Testing

Das zusatzliche T: Timely

Gemass TDD sollten Komponententests vor dem zu testenden Produktionscode geschrieben

werden. Dies geschieht, indem die Abstraktion (Schnittstelle) und dann der Test allein auf der
Grundlage der Methodensignatur und -spezifikation geschrieben wird. Nachdem der Test geschrieben
ist, kann der produktive Code implementiert und direkt getestet werden.

Credits: Der Inhalt dieses Artikels wurde grosstenteils direkt aus dem Englischen Ubernommen und
nur leicht modifiziert. Das Original stammt aus diesem Beitrag der DEV Community, verfasst von
Lucas Fonseca Mundim

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/archiv/im431/learningunits/lull/junit

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/


https://en.wikipedia.org/wiki/Test-driven_development
https://dev.to/mundim/writing-your-f-i-r-s-t-unit-tests-1iop
https://dev.to/mundim
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/archiv/m431/learningunits/lu11/junit

	[LU11e - Unit Testing]
	LU11e - Unit Testing
	Was sind Unit Tests?
	Vorteile von Unit Tests
	Unit Tests bilden die Basis der Testpyramide
	Wie sind Unit Tests zu implementieren?
	[F]ast
	[I]ndependent resp. [I]solated
	[R]epeatable
	[S]self-Validating
	[T]horough
	Das zusätzliche T: Timely




